Laboratorio de Morfología Funcional y Comportamiento, Instituto de Investigaciones Marinas y Costeras (Universidad Nacional Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas), Mar Del Plata, Argentina.
Instituto de Investigaciones Marinas y Costeras (Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas), Mar Del Plata, Argentina.
J Anat. 2024 Nov;245(5):775-786. doi: 10.1111/joa.14117. Epub 2024 Jul 31.
The mammalian skull is very malleable and has notably radiated into highly diverse morphologies, fulfilling a broad range of functional needs. Although gnawing is relatively common in mammals, this behavior and its associated morphology are diagnostic features for rodents. These animals possess a very versatile and highly mechanically advantageous masticatory apparatus, which, for instance, allowed caviomorph rodents to colonize South America during the Mid-Eocene and successfully radiate in over 200 extant species throughout most continental niches. Previous work has shown that differences in bite force within caviomorphs could be better explained by changes in muscle development than in mechanical advantages (i.e., in cranial overall morphology). Considering the strong bites they apply, it is interesting to assess how the reaction forces upon the incisors (compression) and the powerful adductor musculature pulling (tension) mechanically affect the cranium, especially between species with different ecologies (e.g., chisel-tooth digging). Thus, we ran finite element analyses upon crania of the subterranean Talas' tuco-tuco Ctenomys talarum, the semi-fossorial common degu Octodon degus, and the saxicolous long-tailed chinchilla Chinchilla lanigera to simulate: (A) in vivo biting in all species, and (B) rescaled muscle forces in non-ctenomyid rodents to match those of the tuco-tuco. Results show that the stress patterns correlate with the mechanical demands of distinctive ecologies, on in vivo-based simulations, with the subterranean tuco-tuco being the most stressed species. In contrast, when standardizing all three species (rescaled models), non-ctenomyid models exhibited a several-fold increase in stress, in both magnitude and affected areas. Detailed observations evidenced that this increase in stress was higher in lateral sections of the snout and, mainly, the zygomatic arch; between approximately 2.5-3.5 times in the common degu and 4.0-5.0 times in the long-tailed chinchilla. Yet, neither species, module, nor simulation condition presented load factor levels that would imply structural failure by strong, incidental biting. Our results let us conclude that caviomorphs have a high baseline for mechanical strength of the cranium because of the inheritance of a very robust "rodent" model, while interspecific differences are associated with particular masticatory habits and the concomitant level of development of the adductor musculature. Especially, the masseteric and zygomaticomandibular muscles contribute to >80% of the bite force, and therefore, their contraction is responsible for the highest strains upon their origin sites, that is, the zygomatic arch and the snout. Thus, the robust crania of the subterranean and highly aggressive tuco-tucos allow them to withstand much stronger forces than degus or chinchillas, such as the ones produced by their hypertrophied jaw adductor muscles or imparted by the soil reaction.
哺乳动物的颅骨具有很强的可塑性,并且已经显著地辐射出高度多样化的形态,以满足广泛的功能需求。虽然咀嚼在哺乳动物中相对常见,但这种行为及其相关的形态是啮齿动物的诊断特征。这些动物拥有非常灵活和高度机械优势的咀嚼器官,例如,这使得穴居的仓鼠科动物能够在中始新世期间殖民南美洲,并在 200 多种现存物种中成功辐射,遍布大多数大陆小生境。先前的研究表明,在仓鼠类中,咬合力的差异可以通过肌肉发育的变化而不是机械优势(即颅骨整体形态)来更好地解释。考虑到它们施加的强烈咬合力,评估在切牙上的反作用力(压缩)和强大的咀嚼肌拉力(张力)如何机械地影响颅骨是很有趣的,尤其是在具有不同生态的物种之间(例如,凿齿挖掘)。因此,我们对地下的塔拉斯图科图科仓鼠 Ctenomys talarum、半穴居的普通豚鼠 Octodon degus 和石栖长尾龙猫 Chinchilla lanigera 的颅骨进行了有限元分析,以模拟:(A)在所有物种中的活体咀嚼,以及(B)在非仓鼠科啮齿动物中缩放肌肉力以匹配图科图科的肌肉力。结果表明,在基于活体的模拟中,应力模式与独特生态的机械需求相关,地下的图科图科是最受压的物种。相比之下,当标准化所有三种物种(缩放模型)时,非仓鼠科模型的应力显著增加,无论是在幅度还是受影响的区域都增加了数倍。详细观察表明,这种应力增加在鼻部的侧面部分更高,主要是在颧骨弓;在普通豚鼠中增加了 2.5-3.5 倍,在长尾龙猫中增加了 4.0-5.0 倍。然而,没有一个物种、模块或模拟条件表现出的负荷因素水平会导致因强烈的、偶然的咀嚼而导致结构失效。我们的结果表明,仓鼠类具有很高的颅骨机械强度基线,因为它们继承了非常坚固的“啮齿动物”模型,而种间差异则与特定的咀嚼习惯和伴随的咀嚼肌发育水平有关。特别是,咬肌和颧骨下颌肌贡献了>80%的咬合力,因此,它们的收缩是导致其起源部位(即颧骨弓和鼻部)产生最高应变的原因。因此,地下的、高度侵略性的图科图科具有坚固的颅骨,使它们能够承受比豚鼠或龙猫更强的力,例如由其肥大的颌部咀嚼肌产生的力或由土壤反应施加的力。