Tong Sihan, Zhu Jiangli, Wang Zefeng, Yan Jun
International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.
College of Ecology, Lishui University, Lishui 323000, China.
ACS Appl Mater Interfaces. 2024 Aug 14;16(32):42717-42725. doi: 10.1021/acsami.4c08905. Epub 2024 Jul 31.
The emissions of sulfur dioxide (SO) from combustion exhaust gases pose significant risks to public health and the environment due to their harmful effects. Therefore, the development of highly efficient adsorbent polymers capable of capturing SO with high capacity and selectivity has emerged as a critical challenge in recent years. However, existing polymers often exhibit poor SO/CO and SO/N selectivity. Herein, we report two triazine-functionalized triphenylamine-based nanoporous organic polymers (ANOP-6 and ANOP-7) that demonstrate both good SO uptake and high SO/CO and SO/N selectivity. These polymers were synthesized through cost-effective Friedel-Crafts reactions using cyanuric chloride, 3,6-diphenylaminecarbazole, and 2,2',7,7'-tetrakis(diphenylamino)-9,9'-spirobifluorene. The resultant ANOPs are composed of triazine and triphenylamine units and feature an ultramicroporous structure. Remarkably, ANOPs exhibit impressive adsorption capacities for SO, with uptakes of approximately 3.31-3.72 mmol·g at 0.1 bar, increasing to 9.52-9.94 mmol·g at 1 bar. The static adsorption isotherms effectively illustrate the ability of ANOPs to separate SO from SO/CO and SO/N mixtures. At 298 K and 1 bar, ANOP-6 shows outstanding selectivity toward SO/CO (248) and SO/N (13146), surpassing all previously reported triazine-based nanoporous organic polymers. Additionally, dynamic breakthrough tests demonstrate the superior separation properties of ANOPs for SO from an SO/CO/N mixture. ANOPs exhibit a breakthrough time of 73.1 min·g and a saturated SO capacity of 0.53 mmol·g. These results highlight the exceptional adsorption properties of ANOPs for SO, indicating their promising potential for the highly efficient capture of SO from flue gas.
燃烧废气中二氧化硫(SO)的排放因其有害影响而对公众健康和环境构成重大风险。因此,近年来开发能够高容量、高选择性捕获SO的高效吸附剂聚合物已成为一项关键挑战。然而,现有的聚合物通常对SO/CO和SO/N的选择性较差。在此,我们报道了两种基于三嗪功能化三苯胺的纳米多孔有机聚合物(ANOP-6和ANOP-7),它们既表现出良好的SO吸附能力,又具有高的SO/CO和SO/N选择性。这些聚合物是通过使用三聚氯氰、3,6-二苯胺咔唑和2,2',7,7'-四(二苯胺基)-9,9'-螺二芴进行具有成本效益的傅克反应合成的。所得的ANOP由三嗪和三苯胺单元组成,并具有超微孔结构。值得注意的是,ANOP对SO表现出令人印象深刻的吸附容量,在0.1 bar下的吸附量约为3.31 - 3.72 mmol·g,在1 bar下增加到9.52 - 9.94 mmol·g。静态吸附等温线有效地说明了ANOP从SO/CO和SO/N混合物中分离SO的能力。在298 K和1 bar下,ANOP-6对SO/CO(248)和SO/N(13146)表现出出色的选择性,超过了所有先前报道的基于三嗪的纳米多孔有机聚合物。此外,动态突破测试证明了ANOP从SO/CO/N混合物中分离SO的卓越分离性能。ANOP的突破时间为73.1 min·g,饱和SO容量为0.53 mmol·g。这些结果突出了ANOP对SO的优异吸附性能,表明它们在从烟气中高效捕获SO方面具有广阔的应用前景。