Suppr超能文献

基于有效连通性以及卷积神经网络(CNN)与长短期记忆网络(LSTM)混合模型的脑电图(EEG)分析在心理负荷分类中的应用

Classification of mental workload with EEG analysis by using effective connectivity and a hybrid model of CNN and LSTM.

作者信息

Safari MohammadReza, Shalbaf Reza, Bagherzadeh Sara, Shalbaf Ahmad

机构信息

Institute for Cognitive Science Studies, Tehran, Iran.

Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

出版信息

Comput Methods Biomech Biomed Engin. 2024 Jul 31:1-15. doi: 10.1080/10255842.2024.2386325.

Abstract

Estimation of mental workload from electroencephalogram (EEG) signals aims to accurately measure the cognitive demands placed on an individual during multitasking mental activities. By analyzing the brain activity of the subject, we can determine the level of mental effort required to perform a task and optimize the workload to prevent cognitive overload or underload. This information can be used to enhance performance and productivity in various fields such as healthcare, education, and aviation. In this paper, we propose a method that uses EEG and deep neural networks to estimate the mental workload of human subjects during multitasking mental activities. Notably, our proposed method employs subject-independent classification. We use the "STEW" dataset, which consists of two tasks, namely "No task" and "simultaneous capacity (SIMKAP)-based multitasking activity". We estimate the different workload levels of two tasks using a composite framework consisting of brain connectivity and deep neural networks. After the initial preprocessing of EEG signals, an analysis of the relationships between the 14 EEG channels is conducted to evaluate effective brain connectivity. This assessment illustrates the information flow between various brain regions, utilizing the direct Directed Transfer Function (dDTF) method. Then, we propose a deep hybrid model based on pre-trained Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) for the classification of workload levels. The accuracy of the proposed deep model achieved 83.12% according to the subject-independent leave-subject-out (LSO) approach. The pre-trained CNN + LSTM approaches to EEG data have been found to be an accurate method for assessing the mental workload.

摘要

从脑电图(EEG)信号估计心理负荷旨在准确测量个体在多任务心理活动期间所承受的认知需求。通过分析受试者的大脑活动,我们可以确定执行一项任务所需的心理努力程度,并优化负荷以防止认知过载或负荷不足。这些信息可用于提高医疗保健、教育和航空等各个领域的绩效和生产力。在本文中,我们提出了一种使用脑电图和深度神经网络来估计人类受试者在多任务心理活动期间心理负荷的方法。值得注意的是,我们提出的方法采用独立于受试者的分类。我们使用了“STEW”数据集,该数据集由两项任务组成,即“无任务”和基于“同时能力(SIMKAP)”的多任务活动。我们使用由大脑连通性和深度神经网络组成的复合框架来估计两项任务的不同负荷水平。在对脑电图信号进行初始预处理之后,对14个脑电图通道之间的关系进行分析,以评估有效的大脑连通性。该评估利用直接定向传递函数(dDTF)方法说明了各个脑区之间的信息流。然后,我们提出了一种基于预训练卷积神经网络(CNN)和长短期记忆(LSTM)的深度混合模型,用于对负荷水平进行分类。根据独立于受试者的留一受试者法(LSO),所提出的深度模型的准确率达到了83.12%。已发现预训练的CNN + LSTM处理脑电图数据的方法是评估心理负荷的一种准确方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验