Suppr超能文献

用于特定靶点药物发现的基于能量的生成模型。

Energy-based generative models for target-specific drug discovery.

作者信息

Li Junde, Beaudoin Collin, Ghosh Swaroop

机构信息

Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, United States.

出版信息

Front Mol Med. 2023 Jun 1;3:1160877. doi: 10.3389/fmmed.2023.1160877. eCollection 2023.

Abstract

Drug targets are the main focus of drug discovery due to their key role in disease pathogenesis. Computational approaches are widely applied to drug development because of the increasing availability of biological molecular datasets. Popular generative approaches can create new drug molecules by learning the given molecule distributions. However, these approaches are mostly not for target-specific drug discovery. We developed an energy-based probabilistic model for computational target-specific drug discovery. Results show that our proposed TagMol can generate molecules with similar binding affinity scores as molecules. GAT-based models showed faster and better learning relative to Graph Convolutional Network baseline models.

摘要

由于药物靶点在疾病发病机制中起关键作用,因此它是药物研发的主要焦点。由于生物分子数据集的可用性不断增加,计算方法被广泛应用于药物开发。流行的生成方法可以通过学习给定的分子分布来创建新的药物分子。然而,这些方法大多不是用于针对特定靶点的药物发现。我们开发了一种基于能量的概率模型用于计算针对特定靶点的药物发现。结果表明,我们提出的TagMol可以生成与分子具有相似结合亲和力分数的分子。相对于图卷积网络基线模型,基于门控注意力网络(GAT)的模型显示出更快且更好的学习效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8517/11285544/cf26f31d1602/fmmed-03-1160877-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验