C P Harini, A Geetha, I G K Ilangovar, S Vasugi, S Balachandran
Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND.
Cureus. 2024 Jul 1;16(7):e63582. doi: 10.7759/cureus.63582. eCollection 2024 Jul.
Background The fabrication of titanium carbide (TiC)-cobalt sulfide (CoS)-based biosensors with high sensitivity and selectivity can change the biosensor manufacturing industry completely. Molecular and clinical diagnostics, disease progression monitoring, and drug discovery could utilize these sensors for early biomarker detection. MXene (TiC) is a two-dimensional material with exceptional electrical conductivity, hydrophilicity, great thermal stability, large interlayer spacing, and a high surface area. TiC's remarkable characteristics make it well-suited for biomolecule immobilization and target analyte detection. CoS is a transition metal chalcogenide that has shown great potential in biosensors. CoS nanoparticles (NPs) can potentially enhance TiC electrocatalytic activity, particularly in amino acid detection. L-arginine is a semi-essential amino acid, and the body frequently uses it to support healthy circulation and plays a crucial role in protein synthesis. We fabricated the TiC-CoS biosensor for L-arginine detection. Aim This study aims to synthesize and apply TiC-CoS nanocomposites in amino acid biosensing. Materials and methods The TiC nanosheets were synthesized by the selective removal of an aluminum (Al) layer from the precursor (TiAlC) using hydrofluoric acid (HF). The resulting mixture serves as an etchant, especially targeting the Al layers on TiAlC while protecting the desired MXene layers at room temperature. Cobalt nitrate hexahydrate was dissolved in deionized water. Sodium hydroxide was added to the cobalt solution and stirred. Thioacetamide was added to the above solution and stirred (Solution B). A mixture of Solution A and Solution B was stirred for 30 minutes. The mixture is transferred to a hydrothermal reactor and maintained at a temperature of 180°C for 12 hours. Once the reaction completes, we cool the resultant mixture to room temperature and then filter it using the washing technique. The sample underwent a 12-hour drying process at 80°C. Results This study investigated the use of a biosensor that employed TiC-CoS NPs to detect the concentration of L-arginine. The X-ray diffraction (XRD) shows clear and distinct peaks, which means that the synthesized TiC-CoS nanostructures have a crystalline structure. Scanning electron microscopy (SEM) analysis revealed that the sheetlike structure of synthesized TiC-CoS nanostructures revealed the crystalline morphology. The results of this study show that the TiC-CoS NP-based biosensor can be used to detect L-arginine in a sensitive and selective way. Conclusion This study investigated the synthesis of TiC-CoS NPs and their ability to detect L-arginine levels and show a distinct correlation between the L-arginine concentration and the fluorescence intensity, demonstrating the biosensor's effectiveness in detecting L-arginine levels.
背景 制造具有高灵敏度和选择性的碳化钛(TiC)-硫化钴(CoS)基生物传感器可以彻底改变生物传感器制造业。分子和临床诊断、疾病进展监测以及药物发现都可以利用这些传感器进行早期生物标志物检测。MXene(TiC)是一种二维材料,具有出色的导电性、亲水性、良好的热稳定性、较大的层间距和高表面积。TiC的显著特性使其非常适合生物分子固定和目标分析物检测。CoS是一种过渡金属硫属化物,在生物传感器中显示出巨大潜力。CoS纳米颗粒(NPs)可能会增强TiC的电催化活性,特别是在氨基酸检测方面。L-精氨酸是一种半必需氨基酸,人体经常利用它来支持健康的血液循环,并且在蛋白质合成中起着关键作用。我们制备了用于检测L-精氨酸的TiC-CoS生物传感器。
目的 本研究旨在合成TiC-CoS纳米复合材料并将其应用于氨基酸生物传感。
材料和方法 通过使用氢氟酸(HF)从前体(TiAlC)中选择性去除铝(Al)层来合成TiC纳米片。所得混合物用作蚀刻剂,特别是在室温下靶向TiAlC上的Al层,同时保护所需的MXene层。将六水合硝酸钴溶解在去离子水中。向钴溶液中加入氢氧化钠并搅拌。将硫代乙酰胺加入上述溶液中并搅拌(溶液B)。将溶液A和溶液B的混合物搅拌30分钟。将该混合物转移到水热反应器中,并在180°C下保持12小时。一旦反应完成,将所得混合物冷却至室温,然后使用洗涤技术进行过滤。样品在80°C下进行12小时的干燥过程。
结果 本研究调查了使用采用TiC-CoS NPs的生物传感器来检测L-精氨酸的浓度。X射线衍射(XRD)显示出清晰且明显的峰,这意味着合成的TiC-CoS纳米结构具有晶体结构。扫描电子显微镜(SEM)分析表明,合成的TiC-CoS纳米结构的片状结构显示出晶体形态。本研究结果表明,基于TiC-CoS NP的生物传感器可用于灵敏且选择性地检测L-精氨酸。
结论 本研究调查了TiC-CoS NPs的合成及其检测L-精氨酸水平的能力,并显示出L-精氨酸浓度与荧光强度之间存在明显的相关性,证明了该生物传感器在检测L-精氨酸水平方面的有效性。