Suppr超能文献

Modulating Interfacial Properties in Pseudoternary Microemulsions via Urea Addition: Impact of Cosurfactant on the Reverse Micellar Structure and Interactions.

作者信息

Majumdar Ipshita, Ganguli Ashok K

机构信息

Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.

Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur, Laudigam, Odisha 760003, India.

出版信息

Langmuir. 2024 Aug 13;40(32):16833-16845. doi: 10.1021/acs.langmuir.4c01312. Epub 2024 Aug 1.

Abstract

We have studied the structural and interfacial properties of CTAB/isooctane/alcohol/aqueous urea reverse micelles (RMs) for the first time using time-resolved fluorescence and small-angle X-ray scattering techniques. The chain length of alcohol, used as cosurfactant, has been varied to design three microemulsion systems: CTAB/1-butanol, CTAB/1-hexanol, and CTAB/1-octanol/isooctane/water, at a fixed water loading ratio, = 12. Time-resolved fluorescence anisotropy studies indicate that urea induces micellar aggregation in CTAB/1-butanol and CTAB/1-hexanol RMs but breaks down RM aggregates in CTAB/1-octanol RMs. Urea addition slows down solvation dynamics inside RMs at higher urea concentrations, evident from the longer lifetimes of solvent correlation decay. The underlying changes in microemulsion structure and intermicellar interactions are studied using small-angle X-ray scattering studies. The significant intermicellar interactions were modeled using the sticky hard sphere (SHS) for the CTAB/1-butanol and CTAB/1-hexanol RMs and by using the Macroion model for the CTAB/1-octanol RMs. The two different structural factors highlight the dominance of attractive and repulsive forces, respectively. Although there is no change in RM shape, the combination of urea addition and chain length variation in cosurfactants significantly alters the size and interface in these pseudoternary RMs.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验