Li Lixin, Pan Fei, Guo Hongtao, Jiang Haojie, Wang Xiao, Yao Kai, Yang Yang, Yuan Bin, Abdalla Ibrahim, Che Renchao, Lu Wei
Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, P. R. China.
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai, 200438, P. R. China.
Small. 2024 Nov;20(46):e2402564. doi: 10.1002/smll.202402564. Epub 2024 Aug 1.
For materials with coexisting phases, the transition from a random to an ordered distribution of materials often generates new mechanisms. Although the magnetic confinement effect has improved the electromagnetic (EM) performance, the transition from random to ordered magnetic confinement positions remains a synthetic challenge, and the underlying mechanisms are still unclear. Herein, precise control of magnetic nanoparticles is achieved through a spatial confinement growth strategy, preparing five different modalities of magnetic confined carbon fiber materials, effectively inhibiting magnetic agglomeration. Systematic studies have shown that the magnetic confinement network can refine CoNi NPs size and enhance strong magnetic coupling interactions. Compared to CoNi@HCNFs on the hollow carbon fibers (HCNFs) outer surface, HCNFs@CoNi constructed on the inner surface induce stronger spatial charge polarization relaxation at the interface and exhibit stronger magnetic coupling interactions at the inner surface due to the high-density magnetic coupling units at the micro/nanoscale, thereby respectively enhancing dielectric and magnetic losses. Remarkably, they achieve a minimum reflection loss (RL) of -64.54 dB and an absorption bandwidth of 5.60 GHz at a thickness of 1.77 mm. This work reveals the microscale mechanism of magnetic confinement-induced different polarization relaxation and magnetic response, providing a new strategy for designing magnetic materials.
对于具有共存相的材料,材料从随机分布到有序分布的转变通常会产生新的机制。尽管磁约束效应改善了电磁(EM)性能,但磁约束位置从随机到有序的转变仍然是一个合成挑战,其潜在机制仍不清楚。在此,通过空间约束生长策略实现了对磁性纳米颗粒的精确控制,制备了五种不同形态的磁约束碳纤维材料,有效抑制了磁性团聚。系统研究表明,磁约束网络可以细化CoNi NPs尺寸并增强强磁耦合相互作用。与空心碳纤维(HCNFs)外表面的CoNi@HCNFs相比,内表面构建的HCNFs@CoNi在界面处诱导更强的空间电荷极化弛豫,并且由于微/纳米尺度上的高密度磁耦合单元而在内表面表现出更强的磁耦合相互作用,从而分别增强介电和磁损耗。值得注意的是,它们在厚度为1.77 mm时实现了-64.54 dB的最小反射损耗(RL)和5.60 GHz的吸收带宽。这项工作揭示了磁约束诱导不同极化弛豫和磁响应的微观机制,为设计磁性材料提供了一种新策略。