Chiari Vittoria, Rouge Pascal, Taam Manel, Dugas Pierre-Yves, Pannier Gaëlle, Boyron Olivier, Szeto Kai C, de Mallmann Aimery, Boisson Christophe, Taoufik Mostafa
CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), Université Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, 69616, Villeurbanne, France.
INEOS Olefins & Polymers Europe, Rue de Ransbeek 310, 1120, Bruxelles, Belgium.
Chemistry. 2024 Oct 17;30(58):e202402427. doi: 10.1002/chem.202402427. Epub 2024 Oct 2.
Exploring the surface organometallic chemistry on silica of highly electrophilic yttrium complexes is a relatively uncommon endeavor, particularly when focusing on tris-alkyl complexes characterized by Y-C σ-alkyl bonds. A drawback with this class of complexes once grafted on silica, is the frequent occurrence of alkyl transfer by ring opening of siloxane groups, resulting in a mixture of species. Herein, we employed a more stable homoleptic yttrium allyl complex bearing bulky η-1,3-bis(trimethylsilyl)allyl ligand to limit this transfer reaction. This strategy has been validated by comparing the reactivity between [Y{ η-1,3-CH(SiMe)}] and [Y(o-CHPhNMe)] with SiO, where the undesired alkyl transfer reaction occurred for [Y(o-CHPhNMe)] leading to a bipodal [(≡SiO)Y(o-CHPhNMe)] as major surface species, 2, while [Y{ η -1,3-CH(SiMe)}] resulted selectively in a monopodal species, [(≡SiO)Y{η-1,3-CH(SiMe)}], 1. The materials obtained were characterized by DRIFT, solid state NMR, mass balance analysis and EXAFS. Catalyst 1 showed high activity compared to 2 in ethylene polymerization. The catalytic performance of this neutral catalyst 1 was extended to pre-industrial scale in the presence of hydrogen and 1-hexene. An unprecedented activity, up to 7400 g g h was obtained even with very low concentration of scavenger AliBu (TIBA/Y=1.2). The obtained HDPE exhibited desired spherical particle morphology with broad molar mass distribution.
探索高亲电钇配合物在二氧化硅表面的有机金属化学是一项相对罕见的工作,尤其是当聚焦于以Y-C σ-烷基键为特征的三烷基配合物时。这类配合物一旦接枝到二氧化硅上,一个缺点是硅氧烷基团开环导致烷基转移频繁发生,从而产生物种混合物。在此,我们使用了一种更稳定的均配型钇烯丙基配合物,其带有庞大的η-1,3-双(三甲基硅基)烯丙基配体,以限制这种转移反应。通过比较[Y{η-1,3-CH(SiMe)}]和[Y(o-CHPhNMe)]与SiO之间的反应活性,验证了该策略,其中[Y(o-CHPhNMe)]发生了不期望的烷基转移反应,导致形成双足的[(≡SiO)Y(o-CHPhNMe)]作为主要表面物种2,而[Y{η-1,3-CH(SiMe)}]选择性地生成了单足物种[(≡SiO)Y{η-1,3-CH(SiMe)}]1。通过漫反射红外傅里叶变换光谱(DRIFT)、固态核磁共振(NMR)、质量平衡分析和扩展X射线吸收精细结构(EXAFS)对所得材料进行了表征。在乙烯聚合反应中,催化剂1与2相比表现出高活性。这种中性催化剂1的催化性能在氢气和1-己烯存在下扩展到了工业化前规模。即使使用非常低浓度的助催化剂三异丁基铝(TIBA/Y = 1.2),也获得了高达7400 g g h的前所未有的活性。所得的高密度聚乙烯(HDPE)呈现出所需的球形颗粒形态,具有宽的摩尔质量分布。