Victor B S, Scotti F
Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
Rev Sci Instrum. 2024 Aug 1;95(8). doi: 10.1063/5.0218724.
This paper describes the application of a machine learning (ML) algorithm using a convolution neural network, first developed in Boyer et al. ["Classification and prediction of detachment in DIII-D using neural networks trained on C III imaging," Nucl. Fusion (submitted) (2024)], to detect divertor detachment in DIII-D. Detachment detection is based on images from tangentially viewing upper and lower filtered divertor cameras that measure CIII emission at 465 nm. Separate ML models are developed for lower single null and upper single null configurations with mostly closed divertor shapes. Due to the viewing angle and divertor geometry, camera images of the upper divertor show a stark contrast in CIII emission between attached and detached conditions and the model identified detachment with 100% accuracy in the test dataset. For the lower divertor images, the contrast between attached and detached conditions is lower and the model identifies detachment with 96% accuracy. This ML model will be applied to the image data after each shot to provide a rapid assessment of divertor detachment to aid operation of DIII-D with the potential extension to other devices in the future.
本文描述了一种使用卷积神经网络的机器学习(ML)算法的应用,该算法最初由博耶等人开发[《使用基于C III成像训练的神经网络对DIII-D中的脱靶进行分类和预测》,《核聚变》(已提交)(2024年)],用于检测DIII-D中的偏滤器脱靶。脱靶检测基于来自切向观察上下滤波偏滤器相机的图像,这些相机测量465纳米处的CIII发射。针对具有大部分闭合偏滤器形状的下部单零和上部单零配置开发了单独的ML模型。由于视角和偏滤器几何形状的原因,上部偏滤器的相机图像在附着和脱靶状态之间的CIII发射上显示出鲜明对比,并且该模型在测试数据集中以100%的准确率识别出脱靶。对于下部偏滤器图像,附着和脱靶状态之间的对比度较低,该模型以96%的准确率识别出脱靶。这个ML模型将应用于每次放电后的图像数据,以提供对偏滤器脱靶的快速评估,帮助DIII-D的运行,并有可能在未来扩展到其他装置。