Suppr超能文献

光激发三维狄拉克半金属中的高次谐波产生

High-Order Harmonic Generation in Photoexcited Three-Dimensional Dirac Semimetals.

作者信息

Wang Yang, Liu Yu, Zhang Jianing, Liu Xiulan, Jiang Pengzuo, Xiao Jingying, Zhang Linfeng, Yang Hong, Peng Liang-You, Liu Yunquan, Gong Qihuang, Wu Chengyin

机构信息

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.

Collaborative Innovation Center of Quantum Matter, Beijing 100871, China.

出版信息

J Phys Chem Lett. 2024 Aug 8;15(31):8101-8107. doi: 10.1021/acs.jpclett.4c01522. Epub 2024 Aug 1.

Abstract

High-order harmonic generation (HHG) in condensed matter is highly important for potential applications in various fields, such as materials characterization, all-optical switches, and coherent light source generation. Linking HHG to the properties or dynamic processes of materials is essential for realizing these applications. Here, a bridge has been built between HHG and the transient properties of materials through the engineering of interband polarization in a photoexcited three-dimensional Dirac semimetal (3D-DSM). It has been found that HHG can be efficiently manipulated by the electronic relaxation dynamics of 3D-DSM on an ultrafast time scale of several hundred femtoseconds. Furthermore, time-resolved HHG (tr-HHG) has been demonstrated to be a powerful spectroscopy method for tracking electron relaxation dynamics, enabling the identification of electron thermalization and electron-phonon coupling processes and the quantitative extraction of electron-phonon coupling strength. This demonstration provides insights into the active control of HHG and measurements of the electron dynamics.

摘要

凝聚态物质中的高次谐波产生(HHG)对于材料表征、全光开关和相干光源产生等各个领域的潜在应用极为重要。将HHG与材料的性质或动态过程联系起来对于实现这些应用至关重要。在此,通过对光激发三维狄拉克半金属(3D-DSM)中的带间极化进行调控,在HHG与材料的瞬态性质之间架起了一座桥梁。研究发现,在几百飞秒的超快时间尺度上,HHG能够被3D-DSM的电子弛豫动力学有效地操控。此外,时间分辨高次谐波产生(tr-HHG)已被证明是一种用于追踪电子弛豫动力学的强大光谱方法,能够识别电子热化和电子-声子耦合过程,并定量提取电子-声子耦合强度。这一成果为HHG的主动控制和电子动力学的测量提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验