Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India.
ACS Biomater Sci Eng. 2024 Aug 12;10(8):5210-5225. doi: 10.1021/acsbiomaterials.4c00597. Epub 2024 Aug 1.
(), the first genetically modified Generally Recognized As Safe (GRAS) category Lactic Acid producing Bacteria (LAB), is best known for its generalized health-promoting benefits and ability to express heterologous proteins. However, achieving the optimal probiotic effects requires a selective approach that would allow us to study microbial biodistribution, fate, and immunological consequences. Although the chemical conjugation of fluorophores and chromophores represent the standard procedure to tag microbial cells for various downstream applications, it requires a high-throughput synthesis scheme, which is often time-consuming and expensive. On the contrary, the genetic manipulation of LAB vector, either chromosomally or extra-chromosomally, to express bioluminescent or fluorescent reporter proteins has greatly enhanced our ability to monitor bacterial transit through a complex gut environment. However, with faster passage and quick washing out from the gut due to rhythmic contractions of the digestive tract, real-time tracking of LAB vectors, particularly non-commensal ones, remains problematic. To get a deeper insight into the biodistribution of non-commensal probiotic bacteria , we bioengineered to express fluorescence reporter proteins, mCherry (bright red monomeric fluorescent protein) and mEGFP (monomeric enhanced green fluorescent protein), followed by microencapsulation with a mucoadhesive and biodegradable polymer, chitosan. We show that coating of recombinant (r) with chitosan polymer, cross-linked with tripolyphosphate (TPP), retains their ability to express the reporter proteins stably without altering the specificity and sensitivity of fluorescence detection and . Further, we provide evidence of enhanced intragastric stability by chitosan-TPP (CS) coating of r cells, allowing us to study the spatiotemporal distribution for an extended time in the gut of two unrelated hosts, avian and murine. The present scheme involving genetic modification and chitosan encapsulation of non-commensal LAB vector demonstrates great promise as a non-invasive and intensive tool for active live tracking of gut microbes.
(),第一种经基因改造的普遍认为安全(GRAS)的产乳酸细菌(LAB),以其广泛的健康促进益处和表达异源蛋白的能力而闻名。然而,要实现最佳的益生菌效果,需要采用一种选择性的方法,使我们能够研究微生物的生物分布、命运和免疫后果。虽然荧光团和生色团的化学偶联代表了标记微生物细胞用于各种下游应用的标准程序,但它需要一个高通量的合成方案,这往往是耗时和昂贵的。相反,LAB 载体的遗传操作,无论是染色体还是染色体外,表达生物发光或荧光报告蛋白,极大地增强了我们监测细菌通过复杂肠道环境的迁移能力。然而,由于消化道的有节奏收缩,LAB 载体(特别是非共生体)的快速通过和快速冲洗出肠道,对非共生益生菌的实时跟踪仍然是一个问题。为了更深入地了解非共生益生菌的生物分布,我们对 进行了生物工程改造,使其表达荧光报告蛋白 mCherry(亮红色单体荧光蛋白)和 mEGFP(单体增强型绿色荧光蛋白),然后用具有粘膜粘附性和可生物降解性的聚合物壳聚糖进行微囊化。我们表明,用壳聚糖聚合物(用三聚磷酸钠交联)包被重组 (r)可以稳定地表达报告蛋白,而不会改变荧光检测的特异性和敏感性 。此外,我们提供了证据表明,用壳聚糖-三聚磷酸钠(CS)包被 r 细胞可以增强其在胃中的稳定性,使我们能够在两个无关宿主(禽类和鼠类)的肠道中进行更长时间的时空分布研究。本方案涉及非共生 LAB 载体的遗传修饰和壳聚糖包封,为肠道微生物的主动活跟踪提供了一种非侵入性和密集型的工具,具有很大的应用前景。