Tian Guangyuan, Wang Junsheng, Wang Shuo, Xue Chengpeng, Su Hui, Yang Xinghai, Li Quan, Yang Zhihao, Tian Yingchun, Yan Zhifei
School of Materials Science & Engineering, Beijing Institute of Technology, No.5 South Zhongguancun Street, Haidian District, Beijing 100081, China.
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China.
ACS Appl Mater Interfaces. 2024 Aug 14;16(32):43049-43063. doi: 10.1021/acsami.4c10472. Epub 2024 Aug 1.
Previously, we reported our new invention of an ultralight (ρ = 1.61 g/cm) and super high modulus ( = 64.5 GPa) Mg-Li-Al-Zn-Mn-Gd-Y-Sn (LAZWMVT) alloy. Surprisingly, the minor additions of Sn contribute to significant strength and stiffness increases. In this study, we found that MgSn was not only the simple precipitate but also acted as the glue to bind the α-Mg/β-Li interface in a rather complicated way. To explore its mechanism, we have performed first-principle calculations and HAADF-STEM experiments on the interfacial structures. It was found that the interfacial structural models of α-Mg/β-Li, α-Mg/MgSn, and β-Li/MgSn composite interfaces prefer to form α-Mg/MgSn/β-Li ternary composite structures due to the stable formation enthalpy (Δ: -1.95 eV/atom). Meanwhile, the interface cleavage energy and critical cleavage stress show that MgSn contribute to the interfacial bond strength better than the β-Li/α-Mg phase bond strength (σ(β-Li/MgSn): 0.82 GPa > σ(α-Mg/MgSn): 0.78 GPa > σ(β-Li/α-Mg): 0.62 GPa). Based on the interfacial electronic structure analysis, α-Mg/MgSn and β-Li/MgSn were found to have a denser charge distribution and larger charge transfer at the interface, forming stronger chemical bonds. Additionally, according to the crystal orbital Hamiltonian population analysis, the bonding strength of the Mg-Sn atom pair was 2.61 eV, which was higher than the Mg-Li bond strength (0.39 eV). The effect of the MgSn phase on the stability and interfacial bonding strength of the alloying system was dominated by the formation of stronger and more stable Mg-Sn metal covalent bonds, which mainly originated from the contribution of the Mg 3p-Sn 5p orbital bonding states.
此前,我们报道了一种超轻(ρ = 1.61 g/cm)且超高模量( = 64.5 GPa)的Mg-Li-Al-Zn-Mn-Gd-Y-Sn(LAZWMVT)合金的新发明。令人惊讶的是,少量添加Sn会显著提高强度和刚度。在本研究中,我们发现MgSn不仅是简单的析出相,还以相当复杂的方式充当结合α-Mg/β-Li界面的“胶水”。为探究其机制,我们对界面结构进行了第一性原理计算和高角度环形暗场扫描透射电子显微镜(HAADF-STEM)实验。结果发现,由于形成焓稳定(Δ:-1.95 eV/原子),α-Mg/β-Li、α-Mg/MgSn和β-Li/MgSn复合界面的界面结构模型倾向于形成α-Mg/MgSn/β-Li三元复合结构。同时,界面解理能和临界解理应力表明,MgSn对界面结合强度的贡献优于β-Li/α-Mg相的结合强度(σ(β-Li/MgSn):0.82 GPa > σ(α-Mg/MgSn):0.78 GPa > σ(β-Li/α-Mg):0.62 GPa)。基于界面电子结构分析,发现α-Mg/MgSn和β-Li/MgSn在界面处具有更密集的电荷分布和更大的电荷转移,形成了更强的化学键。此外,根据晶体轨道哈密顿布居分析,Mg-Sn原子对的键合强度为2.61 eV,高于Mg-Li键合强度(0.39 eV)。MgSn相合金体系稳定性和界面结合强度的影响主要源于形成更强、更稳定的Mg-Sn金属共价键,这主要来自Mg 3p-Sn 5p轨道键合态的贡献。