de la Lastra José M Pérez, Wardell Samuel J T, Pal Tarun, de la Fuente-Nunez Cesar, Pletzer Daniel
Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206, San Cristóbal de la Laguna, (Santa Cruz de Tenerife), Spain.
Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 9054, Dunedin, New Zealand.
J Med Syst. 2024 Aug 1;48(1):71. doi: 10.1007/s10916-024-02089-5.
The emergence of drug-resistant bacteria poses a significant challenge to modern medicine. In response, Artificial Intelligence (AI) and Machine Learning (ML) algorithms have emerged as powerful tools for combating antimicrobial resistance (AMR). This review aims to explore the role of AI/ML in AMR management, with a focus on identifying pathogens, understanding resistance patterns, predicting treatment outcomes, and discovering new antibiotic agents. Recent advancements in AI/ML have enabled the efficient analysis of large datasets, facilitating the reliable prediction of AMR trends and treatment responses with minimal human intervention. ML algorithms can analyze genomic data to identify genetic markers associated with antibiotic resistance, enabling the development of targeted treatment strategies. Additionally, AI/ML techniques show promise in optimizing drug administration and developing alternatives to traditional antibiotics. By analyzing patient data and clinical outcomes, these technologies can assist healthcare providers in diagnosing infections, evaluating their severity, and selecting appropriate antimicrobial therapies. While integration of AI/ML in clinical settings is still in its infancy, advancements in data quality and algorithm development suggest that widespread clinical adoption is forthcoming. In conclusion, AI/ML holds significant promise for improving AMR management and treatment outcome.
耐药细菌的出现对现代医学构成了重大挑战。作为回应,人工智能(AI)和机器学习(ML)算法已成为对抗抗菌药物耐药性(AMR)的强大工具。本综述旨在探讨AI/ML在AMR管理中的作用,重点关注病原体识别、耐药模式理解、治疗结果预测以及新抗生素药物的发现。AI/ML的最新进展使得能够对大型数据集进行高效分析,以最少的人为干预促进对AMR趋势和治疗反应的可靠预测。ML算法可以分析基因组数据以识别与抗生素耐药性相关的基因标记,从而制定有针对性的治疗策略。此外,AI/ML技术在优化药物给药和开发传统抗生素替代品方面也显示出前景。通过分析患者数据和临床结果,这些技术可以帮助医疗保健提供者诊断感染、评估其严重程度并选择合适的抗菌治疗方法。虽然AI/ML在临床环境中的整合仍处于起步阶段,但数据质量和算法开发的进展表明其即将在临床上广泛应用。总之,AI/ML在改善AMR管理和治疗结果方面具有巨大潜力。