Suppr超能文献

人工智能在降低破裂率方面的作用:动脉瘤检测的革命

Revolutionizing Aneurysm detection: The role of artificial intelligence in reducing rupture rates.

机构信息

Gujranwala Medical College, Gujranwala, Pakistan.

Islamic International Medical College, Rawalpindi, Pakistan.

出版信息

Neurosurg Rev. 2024 Aug 1;47(1):391. doi: 10.1007/s10143-024-02636-1.

Abstract

Cerebral aneurysms, affecting 2-5% of the global population, are often asymptomatic and commonly located within the Circle of Willis. A recent study in Neurosurgical Review highlights a significant reduction in the annual rupture rates of unruptured cerebral aneurysms (UCAs) in Japan from 2003 to 2018. By analyzing age-adjusted mortality rates of subarachnoid hemorrhage (SAH) and the number of treated ruptured cerebral aneurysms (RCAs), researchers found a substantial decrease in rupture rates-from 1.44 to 0.87% and from 0.92 to 0.76%, respectively (p < 0.001). This 88% reduction was largely attributed to improved hypertension management. Recent advancements in artificial intelligence (AI) and machine learning (ML) further support these findings. The RAPID Aneurysm software demonstrated high accuracy in detecting cerebral aneurysms on CT Angiography (CTA), while ML algorithms showed promise in predicting aneurysm rupture risk. A meta-analysis indicated that ML models could achieve 83% sensitivity and specificity in rupture prediction. Additionally, deep learning techniques, such as the PointNet + + architecture, achieved an AUC of 0.85 in rupture risk prediction. These technological advancements in AI and ML are poised to enhance early detection and risk management, potentially contributing to the observed reduction in UCA rupture rates and improving patient outcomes.

摘要

脑动脉瘤影响全球 2-5%的人口,通常无症状,常见于 Willis 环内。《神经外科学评论》最近的一项研究强调,2003 年至 2018 年,日本未破裂脑动脉瘤 (UCAs) 的年破裂率显著下降。通过分析蛛网膜下腔出血 (SAH) 的年龄调整死亡率和治疗破裂脑动脉瘤 (RCA) 的数量,研究人员发现破裂率大幅下降-分别从 1.44%降至 0.87%和从 0.92%降至 0.76%(p<0.001)。这种 88%的降幅主要归因于高血压管理的改善。人工智能 (AI) 和机器学习 (ML) 的最新进展进一步支持了这些发现。RAPID Aneurysm 软件在 CT 血管造影 (CTA) 上检测脑动脉瘤的准确率很高,而 ML 算法在预测动脉瘤破裂风险方面显示出了前景。一项荟萃分析表明,ML 模型在破裂预测方面的灵敏度和特异性均可达到 83%。此外,深度学习技术,如 PointNet++架构,在破裂风险预测方面的 AUC 达到 0.85。这些 AI 和 ML 技术的进步有望增强早期检测和风险管理,可能促成了 UCA 破裂率的观察下降,并改善了患者的预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验