Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK.
Francis Crick Institute, 1 Midland Road, London, UK.
Transgenic Res. 2024 Oct;33(5):415-426. doi: 10.1007/s11248-024-00399-5. Epub 2024 Aug 1.
Mouse models with complex genetic backgrounds are increasingly used in preclinical research to accurately model human disease and to enable temporal and cell-specific evaluation of genetic manipulations. Backcrossing mice onto these complex genetic backgrounds takes time and leads to significant wastage of animals. In this study, we aimed to evaluate whether site-specific nucleases could be used to generate additional genetic mutations in a complex genetic background, using the REVERSA mouse model of atherosclerosis, a model harbouring four genetically altered alleles. The model is comprised of a functional null mutation in the Ldlr gene in combination with a ApoB100 allele, which, after high-fat diet, leads to the rapid development of atherosclerosis. The regression of the pathology is achieved by inducible knock-out of the Mttp gene. Here we report an investigation to establish if microinjection of site-specific nucleases directly into zygotes prepared from the REVERSA could be used to investigate the role of the ATP binding cassette transporter G1 (ABCG1) in atherosclerosis regression. We show that using this approach we could successfully generate two independent knockout lines on the REVERSA background, both of which exhibited the expected phenotype of a significant reduction in cholesterol efflux to HDL in bone marrow-derived macrophages. However, loss of Abcg1 did not impact atherosclerosis regression in either the aortic root or in aortic arch, demonstrating no important role for this transporter subtype. We have demonstrated that site-specific nucleases can be used to create genetic modifications directly onto complex disease backgrounds and can be used to explore gene function without the need for laborious backcrossing of independent strains, conveying a significant 3Rs advantage.
小鼠模型具有复杂的遗传背景,越来越多地用于临床前研究,以准确模拟人类疾病,并能够对遗传操作进行时间和细胞特异性评估。将小鼠回交到这些复杂的遗传背景上需要时间,并且会导致大量动物浪费。在这项研究中,我们旨在评估是否可以使用位点特异性核酸酶在复杂遗传背景中产生额外的遗传突变,使用动脉粥样硬化的 REVERSA 小鼠模型,该模型具有四个改变的基因等位基因。该模型由 Ldlr 基因的功能缺失突变与 ApoB100 等位基因组成,在高脂肪饮食后,迅速发展为动脉粥样硬化。病理学的消退是通过 Mttp 基因的诱导敲除来实现的。在这里,我们报告了一项研究,以确定是否可以将位点特异性核酸酶直接微注射到从 REVERSA 制备的受精卵中,以研究 ATP 结合盒转运蛋白 G1(ABCG1)在动脉粥样硬化消退中的作用。我们表明,使用这种方法,我们可以成功地在 REVERSA 背景上生成两条独立的敲除系,它们都表现出骨髓来源的巨噬细胞中胆固醇向 HDL 的流出显著减少的预期表型。然而,Abcg1 的缺失并没有影响主动脉根部或主动脉弓中的动脉粥样硬化消退,表明这种转运体亚型没有重要作用。我们已经证明,位点特异性核酸酶可用于直接在复杂疾病背景上创建遗传修饰,并可用于探索基因功能,而无需费力地回交独立的品系,从而带来了显著的 3Rs 优势。