Suppr超能文献

基于高灵敏度 CMUT 的被动式空化探测器,用于监测聚焦超声干预期间的微泡动力学。

A High Sensitivity CMUT-Based Passive Cavitation Detector for Monitoring Microbubble Dynamics During Focused Ultrasound Interventions.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Sep;71(9):1087-1096. doi: 10.1109/TUFFC.2024.3436918. Epub 2024 Sep 4.

Abstract

Tracking and controlling microbubble (MB) dynamics in the human brain through acoustic emission (AE) monitoring during transcranial focused ultrasound (tFUS) therapy are critical for attaining safe and effective treatments. The low-amplitude MB emissions have harmonic and ultra-harmonic components, necessitating a broad bandwidth and low-noise system for monitoring transcranial MB activity. Capacitive micromachined ultrasonic transducers (CMUTs) offer high sensitivity and low noise over a broad bandwidth, especially when they are tightly integrated with electronics, making them a good candidate technology for monitoring the MB activity through human skull. In this study, we designed a 16-channel analog front-end (AFE) electronics with a low-noise transimpedance amplifier (TIA), a band-gap reference circuit, and an output buffer stage. To assess AFE performance and ability to detect MB AE, we combined it with a commercial CMUT array. The integrated system has 12.3 - [Formula: see text] receive sensitivity with 0.085 - [Formula: see text] minimum detectable pressure (MDP) up to 3 MHz for a single element CMUT with 3.78 [Formula: see text] area. Experiments with free MBs in a microfluidic channel demonstrate that our system is able to capture key spectral components of MBs' harmonics when sonicated at clinically relevant frequencies (0.5 MHz) and pressures (250 kPa). Together our results demonstrate that the proposed CMUT system can support the development of novel passive cavitation detectors (PCD) to track MB activity for attaining safe and effective focused ultrasound (FUS) treatments.

摘要

通过在经颅聚焦超声(tFUS)治疗过程中通过声发射(AE)监测来跟踪和控制人脑中的微泡(MB)动力学对于实现安全有效的治疗至关重要。低振幅 MB 发射具有谐波和超谐波分量,因此需要具有宽频带和低噪声的系统来监测跨颅 MB 活动。电容式微机械超声换能器(CMUT)在宽频带内具有高灵敏度和低噪声,特别是当它们与电子设备紧密集成时,使其成为通过人颅骨监测 MB 活动的良好候选技术。在这项研究中,我们设计了一个具有低噪声跨阻放大器(TIA)、带隙基准电路和输出缓冲级的 16 通道模拟前端(AFE)电子设备。为了评估 AFE 的性能和检测 MB AE 的能力,我们将其与商业 CMUT 阵列相结合。该集成系统具有 12.3-[公式:见正文]的接收灵敏度,0.085-[公式:见正文]的最小可检测压力(MDP),可达到 3 MHz,单个元件 CMUT 的面积为 3.78[公式:见正文]。在微流控通道中进行的游离 MB 实验表明,当以临床相关频率(0.5 MHz)和压力(250 kPa)进行超声处理时,我们的系统能够捕获 MB 谐波的关键谱分量。我们的结果共同表明,所提出的 CMUT 系统可以支持开发新型被动空化探测器(PCD),以跟踪 MB 活动,从而实现安全有效的聚焦超声(FUS)治疗。

相似文献

1
A High Sensitivity CMUT-Based Passive Cavitation Detector for Monitoring Microbubble Dynamics During Focused Ultrasound Interventions.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Sep;71(9):1087-1096. doi: 10.1109/TUFFC.2024.3436918. Epub 2024 Sep 4.
2
CMUT as a Transmitter for Microbubble-Assisted Blood-Brain Barrier Opening.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Aug;71(8):1042-1050. doi: 10.1109/TUFFC.2024.3417818. Epub 2024 Aug 19.
6
A Novel Design of a Portable Birdcage via Meander Line Antenna (MLA) to Lower Beta Amyloid (Aβ) in Alzheimer's Disease.
IEEE J Transl Eng Health Med. 2025 Apr 10;13:158-173. doi: 10.1109/JTEHM.2025.3559693. eCollection 2025.
7
Investigating the potential of catheter-assisted pulsed focused ultrasound ablation for atherosclerotic plaques.
Med Phys. 2024 Aug;51(8):5181-5189. doi: 10.1002/mp.17253. Epub 2024 Jun 14.
8
Super-Resolution Imaging Through the Human Skull.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jan;67(1):25-36. doi: 10.1109/TUFFC.2019.2937733. Epub 2019 Sep 4.

引用本文的文献

本文引用的文献

1
Ultrasonic Characterization of Ibidi μ-Slide I Luer Channel Slides for Studies With Ultrasound Contrast Agents.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 May;70(5):422-429. doi: 10.1109/TUFFC.2023.3250202. Epub 2023 Apr 26.
2
Spatially targeted brain cancer immunotherapy with closed-loop controlled focused ultrasound and immune checkpoint blockade.
Sci Adv. 2022 Nov 16;8(46):eadd2288. doi: 10.1126/sciadv.add2288. Epub 2022 Nov 18.
3
An RX AFE With Programmable BP Filter and Digitization for Ultrasound Harmonic Imaging.
IEEE Trans Biomed Circuits Syst. 2021 Dec;15(6):1430-1440. doi: 10.1109/TBCAS.2021.3135859. Epub 2022 Feb 17.
4
Towards controlled drug delivery in brain tumors with microbubble-enhanced focused ultrasound.
Adv Drug Deliv Rev. 2022 Jan;180:114043. doi: 10.1016/j.addr.2021.114043. Epub 2021 Nov 18.
5
Acoustic properties across the human skull.
Ultrasonics. 2022 Feb;119:106591. doi: 10.1016/j.ultras.2021.106591. Epub 2021 Oct 21.
7
Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery.
Adv Drug Deliv Rev. 2021 May;172:9-36. doi: 10.1016/j.addr.2021.02.015. Epub 2021 Mar 8.
8
Real-Time Coded Excitation Imaging Using a CMUT-Based Side Looking Array for Intravascular Ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jun;68(6):2048-2058. doi: 10.1109/TUFFC.2021.3054971. Epub 2021 May 25.
10
Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook.
J Control Release. 2020 Oct 10;326:75-90. doi: 10.1016/j.jconrel.2020.06.008. Epub 2020 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验