Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.
Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany.
Bioconjug Chem. 2024 Aug 21;35(8):1233-1250. doi: 10.1021/acs.bioconjchem.4c00290. Epub 2024 Aug 1.
7-Deaza-2'-deoxyisoguanosine forms stable inverse Watson-Crick base pairs with 5-methyl-2'-deoxyisocytidine and purine-purine base pairs with 2'-deoxyguanosine or 5-aza-7-deaza-2'-deoxyguanosine. Both base pairs expand the genetic coding system. The manuscript reports on the functionalization of these base pairs with halogen atoms and clickable side chains introduced at 7-position of the 7-deazapurine base. Oligonucleotides containing the functionalized base pairs were prepared by solid-phase synthesis. To this end, a series of phosphoramidites were synthesized and clickable side chains with short and long linkers were incorporated in oligonucleotides. Fluorescent pyrene conjugates were obtained by postmodification. Functionalization of DNA with a single inverse Watson-Crick base pair by halogens or clickable residues has only a minor impact on duplex stability. Pyrene click adducts increase (long linker) or decrease (short linker) the double helix stability. Stable hybrid duplexes were constructed containing three consecutive purine-purine pairs of 7-functionalized 7-deaza-2'-deoxyisoguanine with guanine or 5-aza-7-deazaguanine in the center and Watson-Crick pairs at both ends. The incorporation of a hybrid base pair tract of 7-deaza-2'-deoxyisoguanosine/5-aza-7-deaza-2'-deoxyguanosine pairs stabilizes the double helix strongly. Fluorescence intensity of pyrene short linker adducts increased when the 7-deazapurine base was positioned opposite to 5-methylisocytosine (inverse base pair) compared to purine-purine base pairs with guanine or 5-aza-7-deazaguanine in opposite positions. For long liker adducts, the situation is more complex. Circular dichroism (CD) spectra of purine DNA differ to those of Watson-Crick double helices and are indicative for the new DNA constructs. The impact of 7-deaza-2'-deoxyisoguanine base pair functionalization is studied for the first time and all experimental details are reported to prepare DNA functionalized at the 7-deazaisoguanine site. The influence of single and multiple incorporations on DNA structure and stability is shown. Clickable residues introduced at the 7-position of the 7-deazaisoguanine base provide handles for Huisgen-Sharpless-Meldal click cycloadditions without harming the stability of purine-pyrimidine and purine-purine base pairs. Other chemistries might be used for bioconjugation. Our investigation paves the way for the functionalization of a new DNA related recognition system expanding the common Watson-Crick regime.
7-脱氮-2'-脱氧异鸟苷与 5-甲基-2'-脱氧胞苷形成稳定的反向 Watson-Crick 碱基对,并与 2'-脱氧鸟苷或 5-氮杂-7-脱氮-2'-脱氧鸟苷形成嘌呤-嘌呤碱基对。这两种碱基对都扩展了遗传编码系统。本文报道了用卤素原子和在 7-脱氮嘌呤碱基上引入的可点击侧链对这些碱基对进行功能化。通过固相合成制备了含有功能化碱基对的寡核苷酸。为此,合成了一系列亚磷酰胺,并将短链和长链连接子的可点击侧链引入寡核苷酸中。通过后期修饰获得了荧光芘缀合物。通过卤素或可点击残基对 DNA 进行单个反向 Watson-Crick 碱基对的功能化仅对双链体稳定性有微小影响。芘点击加合物增加(长连接子)或降低(短连接子)双链体稳定性。构建了含有三个连续的嘌呤-嘌呤对的稳定杂交双链体,其中中心为 7-功能化的 7-脱氮-2'-脱氧异鸟苷,两端为 Watson-Crick 对,在中心有 7-脱氮-2'-脱氧异鸟苷和 5-氮杂-7-脱氮-2'-脱氧鸟苷。7-脱氮-2'-脱氧异鸟苷/5-氮杂-7-脱氮-2'-脱氧鸟苷对的杂交碱基对的掺入强烈稳定了双链体。与在相反位置的鸟嘌呤或 5-氮杂-7-脱氮-2'-脱氧鸟苷相比,当 7-脱氮嘌呤碱基位于 5-甲基胞嘧啶(反向碱基对)对面时,芘短连接子加合物的荧光强度增加。对于长连接子加合物,情况更为复杂。嘌呤 DNA 的圆二色性 (CD) 光谱与 Watson-Crick 双螺旋不同,是新 DNA 结构的指示。首次研究了 7-脱氮-2'-脱氧异鸟苷碱基对功能化的影响,并报告了所有实验细节以制备在 7-脱氮异鸟苷位点功能化的 DNA。显示了单个和多个掺入对 DNA 结构和稳定性的影响。在 7-脱氮异鸟苷碱基的 7-位引入的可点击残基为 Huisgen-Sharpless-Meldal 点击环加成提供了处理方法,而不会损害嘌呤-嘧啶和嘌呤-嘌呤碱基对的稳定性。其他化学方法可能用于生物缀合。我们的研究为功能化新的 DNA 相关识别系统铺平了道路,该系统扩展了常见的 Watson-Crick 规则。