Malcom Randall Department of Veterans Affairs Medical Center, Brain Rehabilitation Research Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida, United States.
Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida, United States.
J Appl Physiol (1985). 2024 Sep 1;137(3):676-688. doi: 10.1152/japplphysiol.00299.2024. Epub 2024 Aug 1.
It is unknown whether activity-based physical therapy (ABPT) modalities that mobilize the paralyzed limbs improve bone integrity at the highly fracture-prone epiphyseal regions of the distal femur and proximal tibia following severe spinal cord injury (SCI). In this study, 4-mo-old skeletally mature littermate-matched male Sprague-Dawley rats received either SHAM surgery or severe contusion SCI. At 1 wk postsurgery, SCI rats were stratified to undergo no-ABPT, two 20-min bouts/day of quadrupedal bodyweight-supported treadmill training (qBWSTT), or hindlimb passive isokinetic bicycle (cycle) training, 5 days/wk for another 3 wk. We assessed locomotor recovery and plantar flexor muscle mass, tracked cancellous and cortical bone microstructure at the distal femoral and proximal tibial epiphyses using in vivo microcomputed tomography (microCT), and evaluated bone turnover at the tibial epiphysis with histomorphometry. All SCI animals displayed persistent hindlimb paralysis and pervasive muscle atrophy. Over the initial 2 wk, which included 1 wk of no exercise and 1 wk of ABPT acclimation, a similar magnitude of bone loss developed in all SCI groups. Thereafter, cancellous bone loss and cortical bone decrements increased in the SCI no-ABPT group. qBWSTT attenuated this trabecular bone loss but did not prevent the ongoing cortical bone deficits. In comparison, twice-daily cycle training increased the number and activity of osteoblasts versus other SCI groups and restored all bone microstructural parameters to SHAM levels at both epiphyseal sites. These data indicate that a novel passive isokinetic cycle training regimen reversed cancellous and cortical bone deterioration at key epiphyseal sites after experimental SCI via osteoblast-mediated bone anabolic mechanisms, independent of locomotor recovery or increased muscle mass. This study was the first to assess how quadrupedal bodyweight-supported treadmill training or passive isokinetic bicycle (cycle) training impacts bone recovery at the distal femoral and proximal tibial epiphyses in a rat model of severe contusion spinal cord injury. Our results demonstrate that passive isokinetic cycle training completely restored cancellous and cortical bone microstructural parameters at these sites via osteoblast-mediated bone anabolic actions, independent of locomotor recovery or increased plantar flexor muscle mass.
目前尚不清楚基于活动的物理疗法(ABPT)模式是否能改善瘫痪肢体的活动,从而提高严重脊髓损伤(SCI)后,远端股骨和近端胫骨易发生骨折的骺端骨完整性。在这项研究中,4 月龄的成熟近交系雄性 Sprague-Dawley 大鼠接受假手术(SHAM)或严重挫伤性 SCI。手术后 1 周,将 SCI 大鼠分为不进行 ABPT、2 组每天 20 分钟的四足体重支持跑步机训练(qBWSTT)或后肢被动等速自行车(cycle)训练,每周 5 天,共 3 周。我们评估了运动恢复和跖屈肌质量,使用体内 microCT 评估了远端股骨和近端胫骨骺端的松质骨和皮质骨微观结构,并通过组织形态计量学评估了胫骨骺端的骨转换。所有 SCI 动物均表现出持续性的后肢瘫痪和广泛的肌肉萎缩。在最初的 2 周内,包括 1 周的无运动和 1 周的 ABPT 适应期,所有 SCI 组均出现了类似程度的骨丢失。此后,SCI 无 ABPT 组的小梁骨丢失和皮质骨减少增加。qBWSTT 减轻了这种小梁骨丢失,但并未阻止持续的皮质骨不足。相比之下,每天两次的循环训练增加了成骨细胞的数量和活性,与其他 SCI 组相比,恢复了两个骺端部位的所有骨微观结构参数至 SHAM 水平。这些数据表明,一种新的被动等速自行车训练方案通过成骨细胞介导的骨合成机制逆转了实验性 SCI 后关键骺端部位的松质骨和皮质骨恶化,与运动恢复或增加跖屈肌质量无关。这项研究首次评估了四足体重支持跑步机训练或被动等速自行车(cycle)训练如何影响严重挫伤性脊髓损伤大鼠模型中远端股骨和近端胫骨骺端的骨恢复。我们的结果表明,通过成骨细胞介导的骨合成作用,被动等速自行车训练完全恢复了这些部位的松质骨和皮质骨微观结构参数,与运动恢复或增加跖屈肌质量无关。