Allison Elric Y, Mei Yixue, Coombs Geoff B, Mizzi Vanessa, Ismayilov Huseyn, Al-Khazraji Baraa K
Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada.
School of Psychology and Sport Science, Bangor University, Bangor, Wales, United Kingdom.
J Appl Physiol (1985). 2024 Oct 1;137(4):873-882. doi: 10.1152/japplphysiol.00328.2024. Epub 2024 Aug 1.
The cold pressor test (CPT) involves cold water immersion of either the upper or lower limb(s) and elicits increases in sympathetic nervous activity (SNA), heart rate (HR), and mean arterial pressure (MAP) via stimulation of pain and cutaneous thermoreceptors. Greater pain perception during the CPT is associated with greater increases in SNA and more robust physiological responses. Due to potential differential sensitivity to both painful and thermal stimuli between upper and lower limbs, as well as potential effects of total exposure area, it is unclear whether the choice of limb(s) in CPT protocol design differentially affects systemic and cerebral hemodynamic responses. Our objective was to assess systemic and cerebral hemodynamic and ventilatory responses to different CPT protocols of the hand (CPT), foot (CPT), or bilateral feet (CPT). We hypothesized CPT would elicit greatest physiological responses due to increased exposure area to the cold stimulus. Twenty-eight (14 M, 14 F) healthy young adults [23.4 (SD: 2.4) yr] participated in three 3-min CPT protocols during a single visit. Blood pressure, HR, middle cerebral artery blood velocity (MCAv) and cerebrovascular conductance index, and end-tidal carbon dioxide ([Formula: see text]) were averaged over the final 30 s of each minute of the CPT for each protocol, and perceived pain was recorded at the end of each minute of the CPT. We found significant effects of the time-CPT protocol interaction on systolic blood pressure ( = 0.02), diastolic blood pressure ( < 0.01), MAP ( < 0.01), and HR ( < 0.001). There were no differences between CPT protocols on either MCAv ( = 0.4) or cerebrovascular conductance index ( = 0.1). HR responses peaked in the first minute of the CPT, and changes from baseline were greater in CPT [Δ14(16) beats/min] compared with CPT [Δ5(13) beats/min; = 0.01] and CPT [Δ4.04(13.3) beats/min; = 0.02]. MAP responses peaked in of the CPT, and changes from baseline were greater in CPT [Δ12(8) mmHg) and CPT (Δ13(9) mmHg] compared with CPT [Δ8(7) mmHg; < 0.01]. Perceived pain was significantly greater in the CPT [CPT1 7(2.3), CPT2 6.5(2.3), CPT3 6(3)] condition compared with CPT [CPT1 6(1.3), CPT2 6(2.3), CPT3 6(2.3)] and CPT [CPT1 6(3.0), CPT2 6(2.0), CPT3 5.5(3.0)] protocols at all three stages of the CPT ( ≤ 0.01). Our findings suggest choice of limb(s) in CPT protocols may lead to differences in systemic hemodynamic responses, with pain perception potentially influencing these responses. Based on our results, we suggest that choice of limb should be considered in future design of CPT studies, with hand CPT providing the best balance between participant tolerability and robust physiological responses. Choice of limb(s) in cold pressor test (CPT) studies appears to influence systemic hemodynamics. Hand and bilateral feet induce more robust responses than single-foot CPT, potentially due to increased exposure area and pain perception. Despite no significant cerebrovascular effects, a sustained hyperventilatory response was noted in bilateral feet CPT. Hand CPTs may provide a balance between robust physiological responses and tolerability. These findings underscore the need for careful limb selection in future CPT studies.
冷加压试验(CPT)包括将上肢或下肢浸入冷水中,通过刺激疼痛和皮肤温度感受器,引起交感神经活动(SNA)、心率(HR)和平均动脉压(MAP)升高。CPT期间更强的疼痛感知与SNA的更大升高及更强烈的生理反应相关。由于上肢和下肢对疼痛和热刺激的潜在敏感性差异,以及总暴露面积的潜在影响,尚不清楚CPT方案设计中肢体的选择是否会对全身和脑血流动力学反应产生不同影响。我们的目的是评估手部(CPT)、足部(CPT)或双侧足部(CPT)不同CPT方案下的全身和脑血流动力学及通气反应。我们假设CPT由于冷刺激暴露面积增加会引起最大的生理反应。28名(14名男性,14名女性)健康年轻成年人[23.4(标准差:2.4)岁]在单次就诊期间参与了三种3分钟的CPT方案。在每种方案的CPT每分钟的最后30秒内,对血压、心率、大脑中动脉血流速度(MCAv)和脑血管传导指数以及呼气末二氧化碳([公式:见正文])进行平均,并在CPT每分钟结束时记录疼痛感知。我们发现时间 - CPT方案交互作用对收缩压(= 0.02)、舒张压(< 0.01)、MAP(< 0.01)和心率(< 0.001)有显著影响。CPT方案在MCAv(= 0.4)或脑血管传导指数(= 0.1)方面没有差异。心率反应在CPT的第一分钟达到峰值,与CPT[Δ5(13)次/分钟;= 0.01]和CPT[Δ4.04(13.3)次/分钟;= 0.02]相比,CPT[Δ14(16)次/分钟]中与基线的变化更大。MAP反应在CPT的[具体时间未给出]达到峰值,与CPT[Δ8(7)mmHg;< 0.01]相比,CPT[Δ12(8)mmHg]和CPT(Δ13(9)mmHg)中与基线的变化更大。在CPT的所有三个阶段,与CPT[CPT1 6(1.3),CPT2 6(2.3),CPT3 6(2.3)]和CPT[CPT1 6(3.0),CPT2 6(2.0),CPT3 5.5(3.0)]方案相比,CPT[CPT1 7(2.3),CPT2 6.5(2.3),CPT3 6(3)]条件下的疼痛感知显著更大(≤ 0.01)。我们的研究结果表明,CPT方案中肢体的选择可能导致全身血流动力学反应的差异,疼痛感知可能会影响这些反应。基于我们的结果,我们建议在未来CPT研究的设计中应考虑肢体的选择,手部CPT在参与者耐受性和强烈生理反应之间提供了最佳平衡。冷加压试验(CPT)研究中肢体的选择似乎会影响全身血流动力学。手部和双侧足部CPT比单足CPT引起更强烈的反应,可能是由于暴露面积增加和疼痛感知。尽管对脑血管没有显著影响,但在双侧足部CPT中观察到持续的过度通气反应。手部CPT可能在强烈的生理反应和耐受性之间提供平衡。这些发现强调了在未来CPT研究中仔细选择肢体的必要性。