School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, P. R. China.
College of Pharmacy, Jinan University, Guangzhou 511443, Guangdong, P. R. China.
Mol Pharm. 2024 Sep 2;21(9):4541-4552. doi: 10.1021/acs.molpharmaceut.4c00435. Epub 2024 Aug 1.
Nanoparticle-loaded dissolving microneedles (DMNs) have attracted increasing attention due to their ability to provide high drug loading, adjustable drug release behavior, and enhanced therapeutic efficiency. However, such delivery systems still face unsatisfied drug delivery efficiency due to insufficient driving force to promote nanoparticle penetration and the lack of fate studies to guide formulation design. Herein, an aggregation-caused quenching (ACQ) probe (P4) was encapsulated in l-arginine (l-Arg)-based nanomicelles, which was further formulated into nitric oxide (NO)-propelled nanomicelle-integrated DMNs (P4/l-Arg NMs@DMNs) to investigate their biological fate. The P4 probe could emit intense fluorescence signals in intact nanomicelles, while quenching with the dissociation of nanomicelles, providing a "distinguishable" method for tracking the fate of nanomicelles at a different status. l-Arg was demonstrated to self-generate NO under the tumor microenvironment with excessive reactive oxygen species (ROS), providing a pneumatic force to promote the penetration of nanomicelles in both three-dimensional (3D)-cultured tumor cells and melanoma-bearing mice. Compared with passive microneedles (P4 NMs@DMNs) without a NO propellant, the P4/l-Arg NMs@DMNs possessed a good NO production performance and higher nanoparticle penetration capacity. In conclusion, this study offered an ACQ probe-based biological fate tracking approach to demonstrate the potential of NO-propelled nanoparticle-loaded DMNs in penetration enhancement for topical tumor therapy.
载药纳米溶解微针(DMNs)因其能够提供高载药量、可调节的药物释放行为和增强的治疗效果而受到越来越多的关注。然而,由于促进纳米颗粒渗透的驱动力不足和缺乏指导制剂设计的命运研究,这种给药系统的药物递送效率仍然不尽如人意。在此,将一种聚集诱导猝灭(ACQ)探针(P4)封装在精氨酸(l-Arg)基纳米胶束中,进一步将其制成一氧化氮(NO)推进的纳米胶束整合 DMNs(P4/l-Arg NMs@DMNs),以研究其生物学命运。P4 探针在完整的纳米胶束中能够发射出强烈的荧光信号,而在纳米胶束解离时猝灭,为跟踪纳米胶束在不同状态下的命运提供了一种“可区分”的方法。l-Arg 被证明可以在肿瘤微环境中产生大量的活性氧(ROS)下自产生 NO,为纳米胶束在三维(3D)培养的肿瘤细胞和荷瘤小鼠中的渗透提供气动驱动力。与没有 NO 推进剂的被动微针(P4 NMs@DMNs)相比,P4/l-Arg NMs@DMNs 具有良好的 NO 产生性能和更高的纳米颗粒渗透能力。总之,本研究提供了一种基于 ACQ 探针的生物命运跟踪方法,证明了 NO 推进的载药 DMNs 在增强局部肿瘤治疗中的渗透潜力。