Suppr超能文献

通过种子诱导生长实现宽带隙钙钛矿薄膜的结晶度控制和应变释放以提高光伏效率

Crystallinity Control and Strain Release in Wide-Bandgap Perovskite Film via Seed-Induced Growth for Efficient Photovoltaics.

作者信息

Yang Haoran, Wu Kai, Guo Haikuo, Wei Jiali, Guo Jingwei, Liu Rui, Wang Xin, Bai Yali, Xu Yue, Li Tiantian, Zhu Chengjun, Hou Fuhua

机构信息

School of Physical Science and Technology, Key Laboratory of Semiconductor Photovoltaic Technology and Energy Materials at Universities of Inner Mongolia Autonomous Region, Inner Mongolia University, Hohhot 010021, China.

出版信息

ACS Appl Mater Interfaces. 2024 Aug 14;16(32):42566-42576. doi: 10.1021/acsami.4c08445. Epub 2024 Aug 1.

Abstract

The seed method stands out as a straightforward and efficient approach for fabricating high-performance perovskite solar cells (PSCs). In this study, we propose the utilization of an antisolvent as an additive to induce crystal seeding, thereby facilitating the growth of wide-bandgap perovskite grains. Specifically, we introduce three commonly used antisolvents─ethyl acetate (EA), isopropanol (IPA), and chlorobenzene (CB)─directly into the perovskite precursor solution to generate perovskite seeds, which serve to promote subsequent nucleation. This antisolvent-crystal seeding method (ACSM) results in increased grain sizes, reduced film defects, and overall improved film quality. Consequently, the power conversion efficiencies (s) of 1.647 eV PSCs with EA, IPA, and CB additives are recorded at 19.86%, 20.61%, and 20.45%, respectively, surpassing that of the reference device with a of 18.83%. Furthermore, the stability of the PSCs prepared through ACSM is notably enhanced. Notably, PSCs optimized with IPA retain 75% of the original after being stored in ambient air conditions (25 °C, RH ∼ 15%) for 30 days, better than the CB-added (64%) and the EA-added devices (53%), while the reference devices only retain 31% of the initial . Moreover, even after continuous thermal annealing at 50 °C for 200 h, IPA-assisted devices demonstrate the best stability, followed by those with CB and EA, with the reference exhibiting the poorest stability.

摘要

籽晶法是一种制造高性能钙钛矿太阳能电池(PSC)的直接且高效的方法。在本研究中,我们提出使用反溶剂作为添加剂来诱导晶体成核,从而促进宽带隙钙钛矿晶粒的生长。具体而言,我们将三种常用的反溶剂——乙酸乙酯(EA)、异丙醇(IPA)和氯苯(CB)——直接引入钙钛矿前驱体溶液中以生成钙钛矿籽晶,这些籽晶有助于促进后续的成核过程。这种反溶剂晶体成核方法(ACSM)导致晶粒尺寸增大、薄膜缺陷减少以及整体薄膜质量得到改善。因此,添加EA、IPA和CB的1.647 eV PSC的功率转换效率分别记录为19.86%、20.61%和20.45%,超过了参考器件18.83%的效率。此外,通过ACSM制备的PSC的稳定性显著提高。值得注意的是,用IPA优化的PSC在环境空气条件(25°C,相对湿度约15%)下储存30天后保留了原始效率的75%,优于添加CB的器件(64%)和添加EA的器件(53%),而参考器件仅保留了初始效率的31%。此外,即使在50°C连续热退火200小时后,IPA辅助的器件仍表现出最佳的稳定性,其次是添加CB和EA的器件,参考器件的稳定性最差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验