Suppr超能文献

聚乙二醇溶液中葡聚糖马兰戈尼液滴及其因共存 DNA 线团-珠粒转变引起的迁移变化。

Marangoni Droplets of Dextran in PEG Solution and Its Motile Change Due to Coil-Globule Transition of Coexisting DNA.

机构信息

Faculty of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan.

Department of Integrated Sciences, College of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan.

出版信息

ACS Appl Mater Interfaces. 2024 Aug 14;16(32):43016-43025. doi: 10.1021/acsami.4c09362. Epub 2024 Aug 1.

Abstract

Motile droplets using Marangoni convection are attracting attention for their potential as cell-mimicking small robots. However, the motion of droplets relative to the internal and external environments that generate Marangoni convection has not been quantitatively described. In this study, we used an aqueous two-phase system [poly(ethylene glycol) (PEG) and dextran] in an elongated chamber to generate motile dextran droplets in a constant PEG concentration gradient. We demonstrated that dextran droplets move by Marangoni convection, resulting from the PEG concentration gradient and the active transport of PEG and dextran into and out of the motile dextran droplet. Furthermore, by spontaneously incorporating long DNA into the dextran droplets, we achieved cell-like motility changes controlled by coexisting environment-sensing molecules. The DNA changes its position within the droplet and motile speed in response to external conditions. In the presence of Mg, the coil-globule transition of DNA inside the droplet accelerates the motile speed due to the decrease in the droplet's dynamic viscosity. Globule DNA condenses at the rear part of the droplet along the convection, while coil DNA moves away from the droplet's central axis, separating the dipole convections. These results provide a blueprint for designing autonomous small robots using phase-separated droplets, which change the mobility and molecular distribution within the droplet in reaction with the environment. It will also open unexplored areas of self-assembly mechanisms through phase separation under convections, such as intracellular phase separation.

摘要

利用 Marangoni 对流的运动液滴因其作为细胞模拟的小型机器人的潜力而受到关注。然而,生成 Marangoni 对流的液滴相对于内部和外部环境的运动尚未被定量描述。在这项研究中,我们使用了一个在长形腔室内的水相双组份系统(聚乙二醇(PEG)和葡聚糖),在恒定的 PEG 浓度梯度中生成运动的葡聚糖液滴。我们证明了葡聚糖液滴通过 Marangoni 对流运动,这是由 PEG 浓度梯度和 PEG 和葡聚糖主动进出运动的葡聚糖液滴引起的。此外,通过自发地将长 DNA 纳入葡聚糖液滴中,我们实现了受共存环境感应分子控制的类似细胞的运动变化。DNA 会根据外部条件改变其在液滴内的位置和运动速度。在存在 Mg 的情况下,由于液滴的动态粘度降低,DNA 在内滴中的螺旋-球转变会加速运动速度。球状 DNA 沿着对流在液滴的后部凝聚,而螺旋 DNA 则从液滴的中心轴移开,分离出偶极对流。这些结果为使用相分离液滴设计自主小型机器人提供了蓝图,这些机器人可以根据环境反应改变液滴内的流动性和分子分布。它还将通过对流下的相分离开辟自组装机制的未知领域,例如细胞内相分离。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验