Suppr超能文献

基于多模态视频图像、光流和水温数据融合的增强型河流悬移质浓度识别。

Enhanced river suspended sediment concentration identification via multimodal video image, optical flow, and water temperature data fusion.

机构信息

State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei, 430072, PR China.

University of Oslo, Department of Geosciences, N-0316 Oslo, Norway.

出版信息

J Environ Manage. 2024 Sep;367:122048. doi: 10.1016/j.jenvman.2024.122048. Epub 2024 Jul 31.

Abstract

Monitoring suspended sediment concentration (SSC) in rivers is pivotal for water quality management and sustainable river ecosystem development. However, achieving continuous and precise SSC monitoring is fraught with challenges, including low automation, lengthy measurement processes, and high cost. This study proposes an innovative approach for SSC identification in rivers using multimodal data fusion. We developed a robust model by harnessing colour features from video images, motion characteristics from the Lucas-Kanade (LK) optical flow method, and temperature data. By integrating ResNet with a mixed density network (MDN), our method fused the image and optical flow fields, and temperature data to enhance accuracy and reliability. Validated at a hydropower station in the Xinjiang Uygur Autonomous Region, China, the results demonstrated that while the image field alone offers a baseline level of SSC identification, it experiences local errors under specific conditions. The incorporation of optical flow and water temperature information enhanced model robustness, particularly when coupling the image and optical flow fields, yielding a Nash-Sutcliffe efficiency (NSE) of 0.91. Further enhancement was observed with the combined use of all three data types, attaining an NSE of 0.93. This integrated approach offers a more accurate SSC identification solution, enabling non-contact, low-cost measurements, facilitating remote online monitoring, and supporting water resource management and river water-sediment element monitoring.

摘要

监测河流中的悬浮泥沙浓度(SSC)对于水质管理和可持续的河流生态系统发展至关重要。然而,实现连续和精确的 SSC 监测充满了挑战,包括自动化程度低、测量过程漫长和成本高。本研究提出了一种使用多模态数据融合的河流 SSC 识别的创新方法。我们通过利用视频图像的颜色特征、Lucas-Kanade(LK)光流法的运动特征和温度数据,开发了一个强大的模型。通过将 ResNet 与混合密度网络(MDN)集成,我们的方法融合了图像和光流场以及温度数据,以提高准确性和可靠性。在中国新疆维吾尔自治区的一个水电站进行验证,结果表明,虽然仅使用图像场可提供 SSC 识别的基线水平,但在特定条件下会出现局部误差。引入光流和水温信息增强了模型的稳健性,特别是在结合图像和光流场时,纳什效率系数(NSE)达到 0.91。进一步增强是通过同时使用所有三种数据类型实现的,NSE 达到 0.93。这种集成方法提供了更准确的 SSC 识别解决方案,实现了非接触、低成本的测量,促进了远程在线监测,并支持水资源管理和河流水沙元素监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验