Suppr超能文献

基于生理学的 CYP2C8 底物罗格列酮及其代谢物的药代动力学模型预测代谢性药物相互作用。

Physiologically based pharmacokinetic modeling of CYP2C8 substrate rosiglitazone and its metabolite to predict metabolic drug-drug interaction.

机构信息

Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland; Drug Metabolism and Pharmacokinetics, Ryvu Therapeutics SA, Kraków, Poland.

Drug Metabolism and Pharmacokinetics, Ryvu Therapeutics SA, Kraków, Poland.

出版信息

Drug Metab Pharmacokinet. 2024 Aug;57:101023. doi: 10.1016/j.dmpk.2024.101023. Epub 2024 May 28.

Abstract

Rosiglitazone is an activator of nuclear peroxisome proliferator-activated (PPAR) receptor gamma used in the treatment of type 2 diabetes mellitus. The elimination of rosiglitazone occurs mainly via metabolism, with major contribution by enzyme cytochrome P450 (CYP) 2C8. Primary routes of rosiglitazone metabolism are N-demethylation and hydroxylation. Modulation of CYP2C8 activity by co-administered drugs lead to prominent changes in the exposure of rosiglitazone and its metabolites. Here, we attempt to develop mechanistic parent-metabolite physiologically based pharmacokinetic (PBPK) model for rosiglitazone. Our goal is to predict potential drug-drug interaction (DDI) and consequent changes in metabolite N-desmethyl rosiglitazone exposure. The PBPK modeling was performed in the PKSim® software using clinical pharmacokinetics data from literature. The contribution to N-desmethyl rosiglitazone formation by CYP2C8 was delineated using vitro metabolite formation rates from recombinant enzyme system. Developed model was verified for prediction of rosiglitazone DDI potential and its metabolite exposure based on observed clinical DDI studies. Developed model exhibited good predictive performance both for rosiglitazone and N-desmethyl rosiglitazone respectively, evaluated based on commonly acceptable criteria. In conclusion, developed model helps with prediction of CYP2C8 DDI using rosiglitazone as a substrate, as well as changes in metabolite exposure. In vitro data for metabolite formation can be successfully utilized to translate to in vivo conditions.

摘要

罗格列酮是一种核过氧化物酶体增殖物激活受体 γ 的激动剂,用于治疗 2 型糖尿病。罗格列酮的消除主要通过代谢,主要由细胞色素 P450(CYP)2C8 酶贡献。罗格列酮代谢的主要途径是 N-去甲基化和羟化。合用药物对 CYP2C8 活性的调节导致罗格列酮及其代谢物暴露的显著变化。在这里,我们试图开发罗格列酮的机制母体-代谢物生理基于药代动力学(PBPK)模型。我们的目标是预测潜在的药物相互作用(DDI)和随后代谢物 N-去甲基罗格列酮暴露的变化。使用文献中的临床药代动力学数据,在 PKSim®软件中进行 PBPK 建模。使用重组酶系统的体外代谢物形成率来描绘 CYP2C8 对 N-去甲基罗格列酮形成的贡献。基于观察到的临床 DDI 研究,开发的模型用于预测罗格列酮 DDI 潜力及其代谢物暴露的验证。开发的模型分别对罗格列酮和 N-去甲基罗格列酮具有良好的预测性能,根据普遍接受的标准进行评估。总之,该模型有助于预测以罗格列酮为底物的 CYP2C8 DDI 以及代谢物暴露的变化。可以成功地将体外代谢物形成数据转化为体内条件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验