Suppr超能文献

DN-ODE:用于乳腺癌肿瘤动力学和无进展生存期的基于数据的神经 ODE 建模。

DN-ODE: Data-driven neural-ODE modeling for breast cancer tumor dynamics and progression-free survivals.

机构信息

Data and Data Science, Sanofi, 450 Water St, Cambridge, 02141, MA, USA.

Data and Data Science, Sanofi, 55 Corporate Dr, Bridgewater, 08807, NJ, USA.

出版信息

Comput Biol Med. 2024 Sep;180:108876. doi: 10.1016/j.compbiomed.2024.108876. Epub 2024 Jul 31.

Abstract

Pharmacokinetic/Pharmacodynamic (PK/PD) modeling is crucial in the development of new drugs. However, traditional population-based PK/PD models encounter challenges when modeling for individual patients. We aim to explore the potential of constructing a pharmacodynamic model for individual breast cancer pharmacodynamics leveraging only limited data from early clinical trial phases. While previous studies on Neural Ordinary Differential Equations (ODEs) suggest promising results in clinical trial practices, they primarily focused on theoretical applications or independent PK/PD modeling. PD modeling from complex and irregular clinical trial data, especially when interacting with PK parameters, is still unclear. To achieve that, we introduce a Data-driven Neural Ordinary Differential Equation (DN-ODE) modeling for breast cancer tumor dynamics and progression-free survival data. To validate this approach, experiments are conducted with early-phase clinical trial data from the Amcenestrant (an oral treatment for breast cancer) dataset (AMEERA 1-2), aiming to predict pharmacodynamics in the later phase (AMEERA 3). DN-ODE model achieves RMSE scores of 8.78 and 0.21 in tumor size and progression-free survival, respectively, with R scores over 0.9 for each task. Compared to PK/PD methodologies, DN-ODE is able to predict robust individual tumor dynamics with only limited cycle data. We also introduce Principal Component Analysis visualizations for encoder results, demonstrating the DN-ODE's capability to discern individual distributions and diverse tumor growth patterns. Therefore, DN-ODE facilitates comprehensive drug efficacy assessments, pinpoints potential responders, and aids in trial design.

摘要

药代动力学/药效动力学(PK/PD)建模在新药开发中至关重要。然而,传统的基于人群的 PK/PD 模型在对个体患者进行建模时会遇到挑战。我们旨在探索仅利用早期临床试验阶段的有限数据为个体乳腺癌药效学构建药效学模型的潜力。虽然以前关于神经常微分方程(ODE)的研究表明在临床试验实践中具有有前景的结果,但它们主要集中在理论应用或独立的 PK/PD 建模上。从复杂和不规则的临床试验数据中进行 PD 建模,特别是当与 PK 参数相互作用时,情况仍然不清楚。为了实现这一目标,我们引入了一种用于乳腺癌肿瘤动力学和无进展生存期数据的基于数据的神经常微分方程(DN-ODE)建模。为了验证这种方法,我们使用 Amcenestrant(一种用于乳腺癌的口服治疗药物)数据集(AMEERA 1-2)的早期临床试验数据进行了实验,旨在预测后期阶段的药效学(AMEERA 3)。DN-ODE 模型在肿瘤大小和无进展生存期方面的 RMSE 得分分别为 8.78 和 0.21,每个任务的 R 得分均超过 0.9。与 PK/PD 方法相比,DN-ODE 仅用有限的周期数据就能预测稳健的个体肿瘤动力学。我们还介绍了用于编码器结果的主成分分析可视化,证明了 DN-ODE 区分个体分布和不同肿瘤生长模式的能力。因此,DN-ODE 促进了全面的药物疗效评估,确定了潜在的应答者,并有助于试验设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验