Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic.
Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany; Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Karl-von-Frisch-Straße 14, 35032 Marburg, Germany.
Curr Biol. 2024 Sep 9;34(17):3855-3865.e7. doi: 10.1016/j.cub.2024.07.018. Epub 2024 Jul 31.
Monocercomonoides exilis is the first known amitochondriate eukaryote. Loss of mitochondria in M. exilis ocurred after the replacement of the essential mitochondrial iron-sulfur cluster (ISC) assembly machinery by a unique, bacteria-derived, cytosolic SUF system. It has been hypothesized that the MeSuf pathway, in cooperation with proteins of the cytosolic iron-sulfur protein assembly (CIA) system, is responsible for the biogenesis of FeS clusters in M. exilis, yet biochemical evidence is pending. Here, we address the M. exilis MeSuf system and show that SUF genes, individually or in tandem, support the loading of iron-sulfur (FeS) clusters into the reporter protein IscR in Escherichia coli. The Suf proteins MeSufB, MeSufC, and MeSufDSU interact in vivo with one another and with Suf proteins of E. coli. In vitro, the M. exilis Suf proteins form large complexes of varying composition and hence may function as a dynamic biosynthetic system in the protist. The putative FeS cluster scaffold MeSufB-MeSufC (MeSufBC) forms multiple oligomeric complexes, some of which bind FeS clusters and form selectively only in the presence of adenosine nucleotides. The multi-domain fusion protein MeSufDSU binds a PLP cofactor and can form higher-order complexes with MeSufB and MeSufC. Our work demonstrates the biochemical property of M. exilis Suf proteins to act as a functional FeS cluster assembly system and provides insights into the molecular mechanism of this unique eukaryotic SUF system.
单环刺螠(Monocercomonoides exilis)是已知的第一种无线粒体真核生物。在必需的线粒体铁硫簇(ISC)组装机制被独特的细菌源性胞质 SUF 系统取代后,M. exilis 丢失了线粒体。人们假设 MeSuf 途径与胞质铁硫蛋白组装(CIA)系统的蛋白质合作,负责 M. exilis 中 FeS 簇的生物发生,但生化证据仍有待确定。在这里,我们研究了 M. exilis 的 MeSuf 系统,并表明 SUF 基因,无论是单独还是串联,都支持将铁硫(FeS)簇加载到大肠杆菌中的报告蛋白 IscR 中。Suf 蛋白 MeSufB、MeSufC 和 MeSufDSU 在体内相互作用,并与大肠杆菌的 Suf 蛋白相互作用。在体外,M. exilis Suf 蛋白形成不同组成的大复合物,因此可能在原生动物中作为动态生物合成系统发挥作用。假定的 FeS 簇支架 MeSufB-MeSufC(MeSufBC)形成多个寡聚复合物,其中一些结合 FeS 簇,并且仅在存在腺苷核苷酸的情况下选择性地形成。多结构域融合蛋白 MeSufDSU 结合 PLP 辅因子,并可以与 MeSufB 和 MeSufC 形成更高阶的复合物。我们的工作证明了 M. exilis Suf 蛋白作为功能性 FeS 簇组装系统的生化特性,并为这一独特的真核 SUF 系统的分子机制提供了见解。