School of Mathematical Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD, Nottinghamshire, United Kingdom.
Division of Biostatistics, College of Public Health, The Ohio State University, 1841 Neil Avenue, Cunz Hall, Columbus, 43210, OH, United States of America.
Math Biosci. 2024 Sep;375:109265. doi: 10.1016/j.mbs.2024.109265. Epub 2024 Jul 30.
In epidemiology, realistic disease dynamics often require Susceptible-Exposed-Infected-Recovered (SEIR)-like models because they account for incubation periods before individuals become infectious. However, for the sake of analytical tractability, simpler Susceptible-Infected-Recovered (SIR) models are commonly used, despite their lack of biological realism. Bridging these models is crucial for accurately estimating parameters and fitting models to observed data, particularly in population-level studies of infectious diseases. This paper investigates stochastic versions of the SEIR and SIR frameworks and demonstrates that the SEIR model can be effectively approximated by a SIR model with time-dependent infection and recovery rates. The validity of this approximation is supported by the derivation of a large-population Functional Law of Large Numbers (FLLN) limit and a finite-population concentration inequality. To apply this approximation in practice, the paper introduces a parameter inference methodology based on the Dynamic Survival Analysis (DSA) survival analysis framework. This method enables the fitting of the SIR model to data simulated from the more complex SEIR dynamics, as illustrated through simulated experiments.
在流行病学中,由于潜伏期的存在,现实疾病动态通常需要类似于易感者-暴露者-感染者-恢复者(SEIR)的模型,因为它们可以解释潜伏期。然而,为了分析的简便性,通常使用更简单的易感者-感染者-恢复者(SIR)模型,尽管它们缺乏生物学的真实性。连接这些模型对于准确估计参数和拟合模型到观测数据至关重要,特别是在传染病的人群水平研究中。本文研究了 SEIR 和 SIR 框架的随机版本,并证明了 SEIR 模型可以通过具有时变感染和恢复率的 SIR 模型有效地近似。这种近似的有效性得到了一个大种群函数大样本定律(FLLN)极限和一个有限种群集中不等式的推导的支持。为了在实践中应用这种近似,本文引入了一种基于动态生存分析(DSA)生存分析框架的参数推断方法。该方法能够将 SIR 模型拟合到从更复杂的 SEIR 动力学模拟的数据,通过模拟实验进行说明。