Suppr超能文献

一种适用于一般潜伏和感染时间分布的特定路径SEIR模型。

A path-specific SEIR model for use with general latent and infectious time distributions.

作者信息

Porter Aaron T, Oleson Jacob J

机构信息

Department of Statistics, University of Missouri, Columbia, Missouri 65211, USA.

出版信息

Biometrics. 2013 Mar;69(1):101-8. doi: 10.1111/j.1541-0420.2012.01809.x. Epub 2013 Jan 16.

Abstract

Most current Bayesian SEIR (Susceptible, Exposed, Infectious, Removed (or Recovered)) models either use exponentially distributed latent and infectious periods, allow for a single distribution on the latent and infectious period, or make strong assumptions regarding the quantity of information available regarding time distributions, particularly the time spent in the exposed compartment. Many infectious diseases require a more realistic assumption on the latent and infectious periods. In this article, we provide an alternative model allowing general distributions to be utilized for both the exposed and infectious compartments, while avoiding the need for full latent time data. The alternative formulation is a path-specific SEIR (PS SEIR) model that follows individual paths through the exposed and infectious compartments, thereby removing the need for an exponential assumption on the latent and infectious time distributions. We show how the PS SEIR model is a stochastic analog to a general class of deterministic SEIR models. We then demonstrate the improvement of this PS SEIR model over more common population averaged models via simulation results and perform a new analysis of the Iowa mumps epidemic from 2006.

摘要

当前大多数贝叶斯易感-暴露-感染-康复(SEIR)模型要么使用指数分布的潜伏期和感染期,允许在潜伏期和感染期采用单一分布,要么对时间分布(特别是在暴露阶段所花费的时间)可用的信息量做出强有力的假设。许多传染病需要对潜伏期和感染期做出更现实的假设。在本文中,我们提供了一种替代模型,该模型允许在暴露和感染阶段都使用一般分布,同时避免了对完整潜伏期数据的需求。这种替代公式是一种路径特定的SEIR(PS SEIR)模型,它沿着通过暴露和感染阶段的个体路径,从而消除了对潜伏期和感染期时间分布的指数假设的需求。我们展示了PS SEIR模型如何是一类一般确定性SEIR模型的随机类似物。然后,我们通过模拟结果证明了这种PS SEIR模型相对于更常见的总体平均模型的改进,并对2006年爱荷华州的腮腺炎疫情进行了新的分析。

相似文献

1
A path-specific SEIR model for use with general latent and infectious time distributions.
Biometrics. 2013 Mar;69(1):101-8. doi: 10.1111/j.1541-0420.2012.01809.x. Epub 2013 Jan 16.
2
A spatial epidemic model for disease spread over a heterogeneous spatial support.
Stat Med. 2016 Feb 28;35(5):721-33. doi: 10.1002/sim.6730. Epub 2015 Sep 13.
3
Non-exponential tolerance to infection in epidemic systems--modeling, inference, and assessment.
Biostatistics. 2012 Sep;13(4):580-93. doi: 10.1093/biostatistics/kxs011. Epub 2012 Apr 20.
4
A network-based analysis of the 1861 Hagelloch measles data.
Biometrics. 2012 Sep;68(3):755-65. doi: 10.1111/j.1541-0420.2012.01748.x. Epub 2012 Feb 24.
5
When and why direct transmission models can be used for environmentally persistent pathogens.
PLoS Comput Biol. 2021 Dec 1;17(12):e1009652. doi: 10.1371/journal.pcbi.1009652. eCollection 2021 Dec.
6
Bayesian model choice for epidemic models with two levels of mixing.
Biostatistics. 2014 Jan;15(1):46-59. doi: 10.1093/biostatistics/kxt023. Epub 2013 Jul 24.
7
How to correctly fit an SIR model to data from an SEIR model?
Math Biosci. 2024 Sep;375:109265. doi: 10.1016/j.mbs.2024.109265. Epub 2024 Jul 30.
9
Bayesian inference for stochastic epidemic models with time-inhomogeneous removal rates.
J Math Biol. 2007 Aug;55(2):223-47. doi: 10.1007/s00285-007-0081-y. Epub 2007 Mar 15.

引用本文的文献

1
Effect of sojourn time distributions on the early dynamics of COVID-19 outbreak.
Nonlinear Dyn. 2023;111(12):11685-11702. doi: 10.1007/s11071-023-08400-2. Epub 2023 Apr 19.
2
The multilevel hierarchical data EM-algorithm. Applications to discrete-time Markov chain epidemic models.
Heliyon. 2022 Dec 22;8(12):e12622. doi: 10.1016/j.heliyon.2022.e12622. eCollection 2022 Dec.
3
Model-based ensembles: Lessons learned from retrospective analysis of COVID-19 infection forecasts across 10 countries.
Sci Total Environ. 2022 Feb 1;806(Pt 2):150639. doi: 10.1016/j.scitotenv.2021.150639. Epub 2021 Sep 27.
4
A review of mathematical model-based scenario analysis and interventions for COVID-19.
Comput Methods Programs Biomed. 2021 Sep;209:106301. doi: 10.1016/j.cmpb.2021.106301. Epub 2021 Jul 27.
5
Compartmental Models of the COVID-19 Pandemic for Physicians and Physician-Scientists.
SN Compr Clin Med. 2020;2(7):852-858. doi: 10.1007/s42399-020-00330-z. Epub 2020 Jun 4.
6
Locally Informed Simulation to Predict Hospital Capacity Needs During the COVID-19 Pandemic.
Ann Intern Med. 2020 Jul 7;173(1):21-28. doi: 10.7326/M20-1260. Epub 2020 Apr 7.
7
Approximate Bayesian computation for spatial SEIR(S) epidemic models.
Spat Spatiotemporal Epidemiol. 2018 Feb;24:27-37. doi: 10.1016/j.sste.2017.11.001. Epub 2017 Nov 22.

本文引用的文献

1
Design and Evaluation of Prophylactic Interventions Using Infectious Disease Incidence Data from Close Contact Groups.
J R Stat Soc Ser C Appl Stat. 2006 May;55(3):317-330. doi: 10.1111/j.1467-9876.2006.00539.x.
2
Epidemic percolation networks, epidemic outcomes, and interventions.
Interdiscip Perspect Infect Dis. 2011;2011:543520. doi: 10.1155/2011/543520. Epub 2011 Feb 21.
3
A spatial analysis of the spread of mumps: the importance of college students and their spring-break-associated travel.
Epidemiol Infect. 2010 Mar;138(3):434-41. doi: 10.1017/S0950268809990719. Epub 2009 Sep 9.
4
Updated recommendations for isolation of persons with mumps.
MMWR Morb Mortal Wkly Rep. 2008 Oct 10;57(40):1103-5.
5
The duration of mumps virus shedding after the onset of symptoms.
Clin Infect Dis. 2008 May 1;46(9):1447-9. doi: 10.1086/587104.
6
Bayesian inference for stochastic epidemic models with time-inhomogeneous removal rates.
J Math Biol. 2007 Aug;55(2):223-47. doi: 10.1007/s00285-007-0081-y. Epub 2007 Mar 15.
7
Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study.
Biometrics. 2006 Dec;62(4):1170-7. doi: 10.1111/j.1541-0420.2006.00609.x.
8
Uncertainty in predictions of disease spread and public health responses to bioterrorism and emerging diseases.
Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15693-7. doi: 10.1073/pnas.0600816103. Epub 2006 Oct 9.
9
Appropriate models for the management of infectious diseases.
PLoS Med. 2005 Jul;2(7):e174. doi: 10.1371/journal.pmed.0020174. Epub 2005 Jul 26.
10
Bayesian analysis of experimental epidemics of foot-and-mouth disease.
Proc Biol Sci. 2004 Jun 7;271(1544):1111-7. doi: 10.1098/rspb.2004.2715.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验