Suppr超能文献

一种适用于一般潜伏和感染时间分布的特定路径SEIR模型。

A path-specific SEIR model for use with general latent and infectious time distributions.

作者信息

Porter Aaron T, Oleson Jacob J

机构信息

Department of Statistics, University of Missouri, Columbia, Missouri 65211, USA.

出版信息

Biometrics. 2013 Mar;69(1):101-8. doi: 10.1111/j.1541-0420.2012.01809.x. Epub 2013 Jan 16.

Abstract

Most current Bayesian SEIR (Susceptible, Exposed, Infectious, Removed (or Recovered)) models either use exponentially distributed latent and infectious periods, allow for a single distribution on the latent and infectious period, or make strong assumptions regarding the quantity of information available regarding time distributions, particularly the time spent in the exposed compartment. Many infectious diseases require a more realistic assumption on the latent and infectious periods. In this article, we provide an alternative model allowing general distributions to be utilized for both the exposed and infectious compartments, while avoiding the need for full latent time data. The alternative formulation is a path-specific SEIR (PS SEIR) model that follows individual paths through the exposed and infectious compartments, thereby removing the need for an exponential assumption on the latent and infectious time distributions. We show how the PS SEIR model is a stochastic analog to a general class of deterministic SEIR models. We then demonstrate the improvement of this PS SEIR model over more common population averaged models via simulation results and perform a new analysis of the Iowa mumps epidemic from 2006.

摘要

当前大多数贝叶斯易感-暴露-感染-康复(SEIR)模型要么使用指数分布的潜伏期和感染期,允许在潜伏期和感染期采用单一分布,要么对时间分布(特别是在暴露阶段所花费的时间)可用的信息量做出强有力的假设。许多传染病需要对潜伏期和感染期做出更现实的假设。在本文中,我们提供了一种替代模型,该模型允许在暴露和感染阶段都使用一般分布,同时避免了对完整潜伏期数据的需求。这种替代公式是一种路径特定的SEIR(PS SEIR)模型,它沿着通过暴露和感染阶段的个体路径,从而消除了对潜伏期和感染期时间分布的指数假设的需求。我们展示了PS SEIR模型如何是一类一般确定性SEIR模型的随机类似物。然后,我们通过模拟结果证明了这种PS SEIR模型相对于更常见的总体平均模型的改进,并对2006年爱荷华州的腮腺炎疫情进行了新的分析。

相似文献

4
A network-based analysis of the 1861 Hagelloch measles data.基于网络的1861年哈格洛赫麻疹数据的分析。
Biometrics. 2012 Sep;68(3):755-65. doi: 10.1111/j.1541-0420.2012.01748.x. Epub 2012 Feb 24.
6
Bayesian model choice for epidemic models with two levels of mixing.两层混合的传染病模型的贝叶斯模型选择。
Biostatistics. 2014 Jan;15(1):46-59. doi: 10.1093/biostatistics/kxt023. Epub 2013 Jul 24.
7

引用本文的文献

1
Effect of sojourn time distributions on the early dynamics of COVID-19 outbreak.潜伏期分布对新冠疫情早期动态的影响。
Nonlinear Dyn. 2023;111(12):11685-11702. doi: 10.1007/s11071-023-08400-2. Epub 2023 Apr 19.
4
A review of mathematical model-based scenario analysis and interventions for COVID-19.基于数学模型的 COVID-19 情景分析和干预措施综述。
Comput Methods Programs Biomed. 2021 Sep;209:106301. doi: 10.1016/j.cmpb.2021.106301. Epub 2021 Jul 27.
7
Approximate Bayesian computation for spatial SEIR(S) epidemic models.空间SEIR(S)流行病模型的近似贝叶斯计算
Spat Spatiotemporal Epidemiol. 2018 Feb;24:27-37. doi: 10.1016/j.sste.2017.11.001. Epub 2017 Nov 22.

本文引用的文献

2
Epidemic percolation networks, epidemic outcomes, and interventions.流行病渗流网络、流行结果及干预措施。
Interdiscip Perspect Infect Dis. 2011;2011:543520. doi: 10.1155/2011/543520. Epub 2011 Feb 21.
9
Appropriate models for the management of infectious diseases.传染病管理的适当模式。
PLoS Med. 2005 Jul;2(7):e174. doi: 10.1371/journal.pmed.0020174. Epub 2005 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验