Suppr超能文献

基于磁敏感加权血管造影成像评估多个深度神经网络用于检测颅内硬脑膜动静脉瘘

Evaluation of multiple deep neural networks for detection of intracranial dural arteriovenous fistula on susceptibility weighted angiography imaging.

作者信息

Sivan Sulaja Jithin, Kannath Santhosh K, Kalaparti Sri Venkata Ganesh Viswanadh, Thomas Bejoy

机构信息

Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India.

出版信息

Neuroradiol J. 2025 Feb;38(1):72-78. doi: 10.1177/19714009241269491. Epub 2024 Aug 1.

Abstract

BACKGROUND

The natural history of intracranial dural arteriovenous fistula (DAVF) is variable and early diagnosis is crucial in order to positively impact the clinical course of aggressive DAVF. Artificial intelligence (AI) based techniques can be promising in this regard, and in this study, we used various deep neural network (DNN) architectures to determine whether DAVF could be reliably identified on susceptibility-weighted angiography images (SWAN).

MATERIALS AND METHODS

A total of 3965 SWAN image slices from 30 digital subtraction angiographically proven DAVF patients and 4380 SWAN image slices from 40 age-matched patients with normal MRI findings as control group were included. The images were categorized as either DAVF or normal and the data was trained using various DNN such as VGG-16, EfficientNet-B0, and ResNet-50.

RESULTS

Various DNN architectures showed the accuracy of 95.96% (VGG-16), 91.75% (EfficientNet-B0), and 86.23% (ResNet-50) on the SWAN image dataset. ROC analysis yielded an area under the curve of 0.796 ( < .001), best for VGG-16 model. Criterion of seven consecutive positive slices for DAVF diagnosis yielded a sensitivity of 74.68% with a specificity of 69.15%, while setting eight slices improved the sensitivity to above 80.38%, with a decrease of specificity up to 56.38%. Based on seven consecutive positive slices criteria, EfficientNet-B0 yielded a sensitivity of 73.21% with a specificity of 45.92% and ResNet-50 yielded a sensitivity of 72.39% with a specificity of 67.42%.

CONCLUSION

This study shows that DNN can extract discriminative features of SWAN for the classification of DAVF from normal with good accuracy, reasonably good sensitivity and specificity.

摘要

背景

颅内硬脑膜动静脉瘘(DAVF)的自然病程多变,早期诊断对于积极影响侵袭性DAVF的临床病程至关重要。基于人工智能(AI)的技术在这方面可能很有前景,在本研究中,我们使用了各种深度神经网络(DNN)架构来确定是否可以在磁敏感加权血管造影图像(SWAN)上可靠地识别DAVF。

材料与方法

纳入了30例经数字减影血管造影证实为DAVF患者的3965张SWAN图像切片,以及40例年龄匹配、MRI结果正常的患者作为对照组的4380张SWAN图像切片。将图像分类为DAVF或正常,并使用各种DNN(如VGG-16、EfficientNet-B0和ResNet-50)对数据进行训练。

结果

各种DNN架构在SWAN图像数据集上的准确率分别为95.96%(VGG-16)、91.75%(EfficientNet-B0)和86.23%(ResNet-50)。ROC分析得出曲线下面积为0.796(P <.001),VGG-16模型最佳。连续七张阳性切片用于DAVF诊断的标准,敏感性为74.68%,特异性为69.15%,而设定为八张切片时,敏感性提高到80.38%以上,特异性降低至56.38%。基于连续七张阳性切片标准,EfficientNet-B0的敏感性为73.21%,特异性为45.92%,ResNet-50的敏感性为72.39%,特异性为67.42%。

结论

本研究表明,DNN可以提取SWAN的鉴别特征,用于从正常情况中对DAVF进行分类,具有良好的准确性、合理的敏感性和特异性。

相似文献

3
Susceptibility-weighted angiography for the detection of high-flow intracranial vascular lesions: preliminary study.
Eur Radiol. 2013 Apr;23(4):1122-30. doi: 10.1007/s00330-012-2690-0. Epub 2012 Oct 31.
4
Dural Arteriovenous Fistulae: Imaging and Management.
Neuroimaging Clin N Am. 2016 May;26(2):247-58. doi: 10.1016/j.nic.2015.12.003. Epub 2016 Feb 28.
7
Benefits and limitations of image guidance in the surgical treatment of intracranial dural arteriovenous fistulas.
Acta Neurochir (Wien). 2006 Feb;148(2):145-53; discussion 153. doi: 10.1007/s00701-005-0656-6. Epub 2005 Dec 7.

本文引用的文献

2
A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans.
Neuroimage Clin. 2021;32:102785. doi: 10.1016/j.nicl.2021.102785. Epub 2021 Aug 11.
4
Evaluation of Artificial Intelligence-Powered Identification of Large-Vessel Occlusions in a Comprehensive Stroke Center.
AJNR Am J Neuroradiol. 2021 Jan;42(2):247-254. doi: 10.3174/ajnr.A6923. Epub 2020 Dec 31.
5
Intracranial Dural Arteriovenous Fistulas With Brainstem Engorgement: An Under-Recognized Entity in Diagnosis and Treatment.
Front Neurol. 2020 Sep 25;11:526550. doi: 10.3389/fneur.2020.526550. eCollection 2020.
6
Diverse Applications of Artificial Intelligence in Neuroradiology.
Neuroimaging Clin N Am. 2020 Nov;30(4):505-516. doi: 10.1016/j.nic.2020.07.003. Epub 2020 Sep 17.
7
Deep Learning-Assisted Diagnosis of Cerebral Aneurysms Using the HeadXNet Model.
JAMA Netw Open. 2019 Jun 5;2(6):e195600. doi: 10.1001/jamanetworkopen.2019.5600.
8
Deep Learning-Based Detection of Intracranial Aneurysms in 3D TOF-MRA.
AJNR Am J Neuroradiol. 2019 Jan;40(1):25-32. doi: 10.3174/ajnr.A5911. Epub 2018 Dec 20.
9
Artificial intelligence in radiology.
Nat Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038/s41568-018-0016-5.
10
Added value of double reading in diagnostic radiology,a systematic review.
Insights Imaging. 2018 Jun;9(3):287-301. doi: 10.1007/s13244-018-0599-0. Epub 2018 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验