Suppr超能文献

人工智能辅助识别综合卒中中心大血管闭塞的评估。

Evaluation of Artificial Intelligence-Powered Identification of Large-Vessel Occlusions in a Comprehensive Stroke Center.

机构信息

From the Department of Radiology (A.Y.-D., G.M., A.E., R.S.-H.).

Faculty of Social health and Welfare (M.S.), Haifa University, Haifa, Israel.

出版信息

AJNR Am J Neuroradiol. 2021 Jan;42(2):247-254. doi: 10.3174/ajnr.A6923. Epub 2020 Dec 31.

Abstract

BACKGROUND AND PURPOSE

Artificial intelligence algorithms have the potential to become an important diagnostic tool to optimize stroke workflow. Viz LVO is a medical product leveraging a convolutional neural network designed to detect large-vessel occlusions on CTA scans and notify the treatment team within minutes via a dedicated mobile application. We aimed to evaluate the detection accuracy of the Viz LVO in real clinical practice at a comprehensive stroke center.

MATERIALS AND METHODS

Viz LVO was installed for this study in a comprehensive stroke center. All consecutive head and neck CTAs performed from January 2018 to March 2019 were scanned by the algorithm for detection of large-vessel occlusions. The system results were compared with the formal reports of senior neuroradiologists used as ground truth for the presence of a large-vessel occlusion.

RESULTS

A total of 1167 CTAs were included in the study. Of these, 404 were stroke protocols. Seventy-five (6.4%) patients had a large-vessel occlusion as ground truth; 61 were detected by the system. Sensitivity was 0.81, negative predictive value was 0.99, and accuracy was 0.94. In the stroke protocol subgroup, 72 (17.8%) of 404 patients had a large-vessel occlusion, with 59 identified by the system, showing a sensitivity of 0.82, negative predictive value of 0.96, and accuracy of 0.89.

CONCLUSIONS

Our experience evaluating Viz LVO shows that the system has the potential for early identification of patients with stroke with large-vessel occlusions, hopefully improving future management and stroke care.

摘要

背景与目的

人工智能算法有可能成为优化脑卒中工作流程的重要诊断工具。Viz LVO 是一种利用卷积神经网络设计的医疗产品,旨在检测 CTA 扫描中的大血管闭塞,并通过专用移动应用程序在几分钟内通知治疗团队。我们旨在评估 Viz LVO 在综合卒中中心的真实临床实践中的检测准确性。

材料与方法

在综合卒中中心安装 Viz LVO 进行本研究。对 2018 年 1 月至 2019 年 3 月期间连续进行的所有头颈部 CTAs 进行算法扫描,以检测大血管闭塞。将系统结果与高级神经放射学家的正式报告进行比较,作为大血管闭塞存在的真实报告。

结果

共纳入 1167 例 CTAs,其中 404 例为脑卒中方案。75 例(6.4%)患者为真实的大血管闭塞患者;系统检测到 61 例。敏感性为 0.81,阴性预测值为 0.99,准确性为 0.94。在脑卒中方案亚组中,404 例患者中有 72 例(17.8%)存在大血管闭塞,系统识别出 59 例,敏感性为 0.82,阴性预测值为 0.96,准确性为 0.89。

结论

我们评估 Viz LVO 的经验表明,该系统有可能早期识别出患有大血管闭塞的脑卒中患者,有望改善未来的管理和卒中护理。

相似文献

2
Fast Automatic Detection of Large Vessel Occlusions on CT Angiography.快速自动检测 CT 血管造影中的大血管闭塞。
Stroke. 2019 Dec;50(12):3431-3438. doi: 10.1161/STROKEAHA.119.027076. Epub 2019 Nov 4.

引用本文的文献

5
Generalizable self-supervised learning for brain CTA in acute stroke.用于急性卒中脑CTA的可推广自监督学习
Comput Biol Med. 2025 Jan;184:109337. doi: 10.1016/j.compbiomed.2024.109337. Epub 2024 Nov 12.
7

本文引用的文献

3
Artificial intelligence in radiology.人工智能在放射学中的应用。
Nat Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038/s41568-018-0016-5.
4
Deep Learning in Neuroradiology.深度学习在神经影像学中的应用。
AJNR Am J Neuroradiol. 2018 Oct;39(10):1776-1784. doi: 10.3174/ajnr.A5543. Epub 2018 Feb 1.
9
Deep into the Brain: Artificial Intelligence in Stroke Imaging.深入大脑:中风成像中的人工智能
J Stroke. 2017 Sep;19(3):277-285. doi: 10.5853/jos.2017.02054. Epub 2017 Sep 29.
10
Machine Learning for Medical Imaging.用于医学成像的机器学习
Radiographics. 2017 Mar-Apr;37(2):505-515. doi: 10.1148/rg.2017160130. Epub 2017 Feb 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验