Suppr超能文献

基于神经网络的电色散预补偿,用于强度调制和直接检测系统中80公里光纤上56Gb/s的4电平脉冲幅度调制信号。

Neural network-based electrical dispersion pre-compensation for a 56 Gb/s PAM-4 over an 80 km fiber in intensity-modulation and direct-detection systems.

作者信息

Rong Limin, Ni Weihao, Chen Zhiwei, Li Fan

出版信息

Opt Lett. 2024 Aug 1;49(15):4138-4141. doi: 10.1364/OL.529539.

Abstract

A neural network (NN)-based electrical dispersion pre-compensation (pre-EDC) scheme in intensity-modulation and direct-detection (IM/DD) systems is proposed and experimentally demonstrated in this Letter. The scheme enables 56 Gbit/s four-level pulse amplitude modulation (PAM-4) generation at a transmitter over an 80 km single-mode fiber (SMF) transmission in the C-band. The NN is utilized to better fit nonlinear phase-amplitude transformation due to the chromatic dispersion (CD) in IM/DD systems, in place of the existing Gerchberg-Saxton (GS) iterative algorithm and linear GS-based finite impulse response (GS-FIR) non-iterative compensation schemes. The experimental results show that the measured bit error ratio (BER) can be reduced to below the 7% hard-decision forward error correction (HD-FEC) threshold of 3.8 × 10 with 0 dBm receiver optical power (ROP) by the NN-based non-iterative pre-EDC scheme, which also saves up to 81% of computational complexity compared to the GS-based scheme. The results indicate that our proposed scheme is promising for the CD pre-compensation at the transmitter.

摘要

本文提出并通过实验验证了一种基于神经网络(NN)的强度调制与直接检测(IM/DD)系统中的电色散预补偿(pre-EDC)方案。该方案能够在发射端实现56 Gbit/s的四电平脉冲幅度调制(PAM-4)信号生成,并通过80 km的C波段单模光纤(SMF)进行传输。利用神经网络来更好地拟合IM/DD系统中由于色散(CD)导致的非线性相位-幅度变换,取代了现有的格尔奇贝格-萨克斯顿(GS)迭代算法和基于线性GS的有限脉冲响应(GS-FIR)非迭代补偿方案。实验结果表明,基于神经网络的非迭代预EDC方案在接收端光功率(ROP)为0 dBm时,可将测量的误码率(BER)降低到低于3.8×10⁻³的7%硬判决前向纠错(HD-FEC)阈值,与基于GS的方案相比,还可节省高达81%的计算复杂度。结果表明,我们提出的方案在发射端进行色散预补偿方面具有很大的潜力。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验