Suppr超能文献

基于径向基函数神经网络的 C 波段 4×50Gb/s PAM-4 传输在 80km SSMF 上实现。

Radial basis function neural network enabled C-band 4 × 50  Gb/s PAM-4 transmission over 80  km SSMF.

出版信息

Opt Lett. 2018 Aug 1;43(15):3542-3545. doi: 10.1364/OL.43.003542.

Abstract

We propose a novel radial basis function neural network (RBF-NN)-based nonlinear equalizer (NLE) for the intensity modulation/direct detection (IM/DD) transmission. After optimizing input characteristics of the RBF-NN, we experimentally demonstrate C-band 4×50  Gb/s four-level pulse-amplitude modulation (PAM-4) transmission over 80 km standard single-mode fiber (SSMF), using 18 GHz direct-modulated lasers and dispersion compensation fiber. We demonstrate that the RBF-NN-based NLE outperforms the commonly used Volterra filter equalizer and recently proposed multilayer perceptron (MLP)-based NLE by about 4.5 and 1.5 dB improvements of receiver sensitivity at the 7% forward error correction threshold, respectively. Furthermore, we identify that both the training stability and fitting ability of the RBF-NN-based NLE are better than those of the MLP-based NLE.

摘要

我们提出了一种基于径向基函数神经网络(RBF-NN)的新型非线性均衡器(NLE),用于强度调制/直接检测(IM/DD)传输。在优化 RBF-NN 的输入特性后,我们使用 18GHz 直接调制激光器和色散补偿光纤,在 80km 标准单模光纤(SSMF)上实验演示了 C 波段 4×50  Gb/s 四电平脉冲幅度调制(PAM-4)传输。我们证明,基于 RBF-NN 的 NLE 比常用的 Volterra 滤波器均衡器和最近提出的基于多层感知器(MLP)的 NLE 分别提高了约 4.5dB 和 1.5dB 的接收灵敏度,在 7%前向纠错阈值下。此外,我们发现基于 RBF-NN 的 NLE 的训练稳定性和拟合能力均优于基于 MLP 的 NLE。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验