Suppr超能文献

超精密光学抛光中基于小波变换的基于数据的系统误差提取与补偿方法

Data-based systematic error extraction and compensation methods based on wavelet transform in ultra-precision optical polishing.

作者信息

Li Hanjie, Wan Songlin, Jiang Pandeng, Yan Shuo, Han Yichi, Wang Lin, Niu Zhenqi, Hu Chen, Jiang Guochang, Cao Zhen, Zhang Yifan, Wei Chaoyang, Shao Jianda

出版信息

Opt Lett. 2024 Aug 1;49(15):4366-4369. doi: 10.1364/OL.527827.

Abstract

Sub-aperture polishing is a key technique for fabricating ultra-precision optics. However, the existence of the polishing errors that are difficult to be compensated by physical modeling seriously affects the manufacturing accuracy and efficiency of optical components. To address this problem, a data-based systematic error extraction and compensation (DSEC) method was proposed to enhance the polishing accuracy on optics. To maximize the extraction quality in a small dataset condition, the wavelet transform is introduced into the extraction process, and the uncertainty of the piston term in the interferometer measurement is improved by L1-norm optimization. Furthermore, two typical error sources (loss of polishing fluid in the edge and the robot trajectory error) are used to verify the effectiveness of the proposed method; in experimental verification, the root mean square (RMS) of the surface figure of a ϕ85-mm mirror was decreased from 0.069λ to 0.017λ, and the RMS of the 610 × 440 mm mirrors was achieved at 0.019λ after the edge compensation, where the polishing accuracy can be improved by more than 4 times; additionally, the RMS of the surface figure with an effective aperture of 480 × 360 mm mirror was reached at 0.011λ after the trajectory error compensation, where the polishing accuracy can be improved by more than 2 times. The proposed DSEC model offers insights that will help achieve advancement in the sub-aperture polishing process.

摘要

子孔径抛光是制造超精密光学元件的一项关键技术。然而,存在一些难以通过物理建模进行补偿的抛光误差,这严重影响了光学元件的制造精度和效率。为了解决这个问题,提出了一种基于数据的系统误差提取与补偿(DSEC)方法,以提高光学元件的抛光精度。为了在小数据集条件下最大化提取质量,将小波变换引入提取过程,并通过L1范数优化提高干涉仪测量中活塞项的不确定性。此外,利用两个典型误差源(边缘抛光液损失和机器人轨迹误差)验证了所提方法的有效性;在实验验证中,直径85毫米镜面形的均方根(RMS)从0.069λ降至0.017λ,边缘补偿后610×440毫米镜面形的RMS达到0.019λ,抛光精度提高了4倍以上;此外,有效孔径为480×360毫米镜面形在轨迹误差补偿后的表面均方根达到0.011λ,抛光精度提高了2倍以上。所提出的DSEC模型提供了一些见解,将有助于在子孔径抛光过程中取得进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验