Geng Chuannan, Jiang Xin, Hong Shuang, Wang Li, Zhao Yufei, Qi Jiangshan, Shi Jiwei, Wang Junjie, Peng Linkai, Hu Zhonghao, Guo Yong, Jin Feng-Min, Yang Quan-Hong, Lv Wei
Shenzhen Geim Graphene Center, Engineering Laboratory for Functionalized Carbon Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.
Adv Mater. 2024 Sep;36(38):e2407741. doi: 10.1002/adma.202407741. Epub 2024 Aug 1.
The metal-catalyzed sulfur reaction in lithium-sulfur (Li-S) batteries usually suffers from the strong binding of sulfur species to the catalyst surface, which destroys the electric double layer (EDL) region there. This causes rapid catalyst deactivation because it prevents the desorption of sulfur species and mass transport through the EDL is hindered. This work introduces a competitive adsorption factor (f) as a new indicator to quantify the competitive adsorption of sulfur species in the EDL and proposes an alloying method to change it by strengthening the p-d hybridization of alloying metals with electrolyte solvents. A cobalt-zinc alloy catalyst with a moderate f lowers the activation energy of the rate-limiting step of the conversion of lithium polysulfides to lithium sulfide, giving a platform capacity proportion that is 96% of the theoretical value and has a greatly improved anti-passivation ability, especially at high sulfur loadings and lean electrolyte conditions (a low E/S ratio of 5 µL mg ). A pouch cell using this approach has a high energy density of up to 464 Wh kg. Such a competitive adsorption indicator and alloying strategy offer a new guideline for catalyst design and a practical electrocatalysis solution for Li-S batteries.
锂硫(Li-S)电池中的金属催化硫反应通常会受到硫物种与催化剂表面的强结合影响,这会破坏那里的双电层(EDL)区域。这会导致催化剂迅速失活,因为它会阻止硫物种的解吸,并且阻碍了通过EDL的质量传输。这项工作引入了一个竞争吸附因子(f)作为一种新的指标,用于量化EDL中硫物种的竞争吸附,并提出了一种合金化方法,通过加强合金金属与电解质溶剂的p-d杂化来改变它。具有适度f的钴锌合金催化剂降低了多硫化锂转化为硫化锂限速步骤的活化能,给出了占理论值96%的平台容量比例,并且具有大大提高的抗钝化能力,特别是在高硫负载和贫电解质条件下(低E/S比为5 μL mg)。采用这种方法的软包电池具有高达464 Wh kg的高能量密度。这样一种竞争吸附指标和合金化策略为催化剂设计提供了新的指导方针,也为Li-S电池提供了一种实用的电催化解决方案。