Suppr超能文献

竹节虫的毛细血管黏附。

Capillary adhesion of stick insects.

机构信息

Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands.

Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, The Netherlands.

出版信息

Ann N Y Acad Sci. 2024 Aug;1538(1):98-106. doi: 10.1111/nyas.15195. Epub 2024 Aug 1.

Abstract

Scientific progress within the last few decades has revealed the functional morphology of an insect's sticky footpads-a compliant pad that secretes thin liquid films. However, the physico-chemical mechanisms underlying their adhesion remain elusive. Here, we explore these underlying mechanisms by simultaneously measuring adhesive force and contact geometry of the adhesive footpads of live, tethered Indian stick insects, Carausius morosus, spanning more than two orders of magnitude in body mass. We find that the adhesive force we measure is similar to the previous measurements that use a centrifuge. Our measurements afford us the opportunity to directly probe the adhesive stress in vivo and use existing theory on capillary adhesion to predict the surface tension of the secreted liquid and compare it to previous assumptions. From our predictions, we find that the surface tension required to generate the adhesive stresses we observed ranges between 0.68 and 12 mN . The low surface tension of the liquid would enhance the wetting of the stick insect's footpads and promote their ability to conform to various substrates. Our insights may inform the biomimetic design of capillary-based, reversible adhesives and motivate future studies on the physico-chemical properties of the secreted liquid.

摘要

在过去几十年的科学进步中,人们揭示了昆虫粘性足垫的功能形态——一种柔软的足垫,它会分泌出很薄的液体膜。然而,其粘性背后的物理化学机制仍然难以捉摸。在这里,我们通过同时测量活体、系绳的印度竹节虫 Carausius morosus 的粘性足垫的粘合力和接触几何形状,来探索这些潜在的机制,其体重跨越了两个数量级。我们发现,我们测量的粘合力与之前使用离心机的测量结果相似。我们的测量使我们有机会直接在体内探测粘性应力,并利用现有的毛细粘附理论来预测分泌液体的表面张力,并将其与之前的假设进行比较。从我们的预测中,我们发现,产生我们观察到的粘性应力所需的表面张力范围在 0.68 到 12 mN 之间。液体的低表面张力会增强竹节虫足垫的润湿性,并提高其适应各种基质的能力。我们的研究结果可能为基于毛细作用的、可重复使用的粘性剂的仿生设计提供信息,并激发对分泌液体的物理化学性质的进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验