Maity Upasana, Aggarwal Ritika, Balasubramanian Rami, Venkatraman Divya Lakshmi, R Hegde Shubhada
Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.
Novartis Pharmaceuticals, Hyderabad, India.
Bioinform Biol Insights. 2024 Jul 30;18:11779322241263674. doi: 10.1177/11779322241263674. eCollection 2024.
Small non-coding RNAs (sRNAs) regulate the synthesis of virulence factors and other pathogenic traits, which enables the bacteria to survive and proliferate after host infection. While high-throughput sequencing data have proved useful in identifying sRNAs from the intergenic regions (IGRs) of the genome, it remains a challenge to present a complete genome-wide map of the expression of the sRNAs. Moreover, existing methodologies necessitate multiple dependencies for executing their algorithm and also lack a targeted approach for the sRNA identification. We developed an Isolation Forest algorithm-based method and the tool Prediction Of sRNAs using Isolation Forest for the identification of sRNAs from available bacterial sRNA-seq data (http://posif.ibab.ac.in/). Using this framework, we predicted 1120 sRNAs and 46 small proteins in . Besides, we highlight the context-dependent expression of novel sRNAs, their probable synthesis, and their potential relevance in stress response mechanisms manifested by
小非编码RNA(sRNAs)调节毒力因子的合成和其他致病特征,使细菌能够在宿主感染后存活和增殖。虽然高通量测序数据已被证明有助于从基因组的基因间区域(IGRs)中识别sRNAs,但呈现sRNAs表达的完整全基因组图谱仍然是一项挑战。此外,现有方法在执行其算法时需要多个依赖项,并且在sRNA识别方面缺乏针对性方法。我们开发了一种基于孤立森林算法的方法以及使用孤立森林进行sRNAs预测的工具,用于从可用的细菌sRNA测序数据中识别sRNAs(http://posif.ibab.ac.in/)。使用这个框架,我们在[具体物种]中预测了1120个sRNAs和46个小蛋白。此外,我们强调了新型sRNAs的上下文依赖性表达、它们可能的合成以及它们在[具体应激反应机制]所表现出的应激反应机制中的潜在相关性。