Cao Biwei, Yu Xiaoqing, Gonzalez Gullermo, Murthy Amith R, Li Tingyi, Shen Yuanyuan, Yao Sijie, Conejo-Garcia Jose R, Jiang Peng, Wang Xuefeng
Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
Department of Integrative Immunology, Duke University, Durham, NC 27710, USA.
bioRxiv. 2024 Jul 23:2024.07.19.604345. doi: 10.1101/2024.07.19.604345.
Cancer transcriptomic data are used extensively to interrogate the prognostic value of targeted genes, yet basic scientists and clinicians have predominantly relied on univariable survival analysis for this purpose. This method often fails to capture the full prognostic potential and contextual relevance of the genes under study, inadvertently omitting a group of genes we term univariable missed-opportunity prognostic (UMOP) genes. Recognizing the complexity of revealing multifaceted prognostic implications, especially when extending the analysis to include various covariates and thresholds, we present the Cancer Gene Prognosis Atlas (CGPA). This platform greatly enhances gene-centric biomarker research across cancer types by offering an interactive and user-friendly interface for highly customized, in-depth prognostic analysis. CGPA notably supports data-driven exploration of gene pairs and gene-hallmark relationships, elucidating key composite biological mechanisms like synthetic lethality and immunosuppression. It further expands its capabilities to assess multi-gene panels using both public and user-provided data, facilitating a seamless mechanism-to-machine analysis. Additionally, CGPA features a designated portal for discovering prognostic gene modules using curated cancer immunotherapy data. Ultimately, CGPA's comprehensive, accessible tools allow cancer researchers, including those without statistical expertise, to precisely investigate the prognostic landscape of genes, customizing the model to fit specific research hypotheses and enhancing biomarker discovery and validation through a synergy of mechanistic and data-driven strategies.
癌症转录组数据被广泛用于探究靶向基因的预后价值,但基础科学家和临床医生主要依赖单变量生存分析来实现这一目的。这种方法往往无法充分捕捉所研究基因的全部预后潜力和背景相关性,不经意间遗漏了一组我们称为单变量错失机会预后(UMOP)基因的基因。认识到揭示多方面预后影响的复杂性,特别是在将分析扩展到包括各种协变量和阈值时,我们推出了癌症基因预后图谱(CGPA)。该平台通过提供一个交互式且用户友好的界面,用于高度定制的深入预后分析,极大地增强了跨癌症类型的以基因为中心的生物标志物研究。CGPA尤其支持对基因对和基因特征关系进行数据驱动的探索,阐明关键的复合生物学机制,如合成致死和免疫抑制。它进一步扩展了其能力,可使用公共数据和用户提供的数据评估多基因面板,促进从机制到机器的无缝分析。此外,CGPA设有一个指定门户,用于利用经过整理的癌症免疫治疗数据发现预后基因模块。最终,CGPA全面且易于使用的工具使癌症研究人员,包括那些没有统计学专业知识的人员,能够精确研究基因的预后情况,定制模型以符合特定的研究假设,并通过机制和数据驱动策略的协同作用增强生物标志物的发现和验证。