Zolfaghar Mona, Acharya Prabha, Joshi Pranav, Choi Na Young, Shrestha Sunil, Lekkala Vinod Kumar Reddy, Kang Soo-Yeon, Lee Minseong, Lee Moo-Yeal
Department of Biomedical Engineering, University of North Texas, Denton, TX, 76207, USA.
Bioprinting Laboratories Inc., Dallas, TX, 75234, USA.
bioRxiv. 2024 Jul 25:2024.07.25.605147. doi: 10.1101/2024.07.25.605147.
Cryopreservation in cryovials extends cell storage at low temperatures, and advances in organoid cryopreservation improve reproducibility and reduce generation time. However, cryopreserving human organoids presents challenges due to the limited diffusion of cryoprotective agents (CPAs) into the organoid core and the potential toxicity of these agents. To overcome these obstacles, we developed a cryopreservation technique using a pillar plate platform. To illustrate cryopreservation application to human brain organoids (HBOs), early-stage HBOs were produced by differentiating induced pluripotent stem cells (iPSCs) into neuroectoderm (NEs) in an ultralow atachement (ULA) 384-well plate. These NEs were transferred and encapsulated in Matrigel on the pillar plate. The early-stage HBOs on the pillar plate were exposed to four commercially available CPAs, including PSC cryopreservation kit, CryoStor CS10, 3dGRO, and 10% DMSO, before being frozen overnight at -80°C and subsequently stored in a liquid nitrogen dewar. We examined the impact of CPA type, organoid size, and CPA exposure duration on cell viability post-thaw. Additionally, the differentiation of early-stage HBOs on the pillar plate was assessed using RT-qPCR and immunofluorescence staining. The PSC cryopreservation kit proved to be the least toxic for preserving these HBOs on the pillar plate. Notably, smaller HBOs showed higher cell viability post-cryopreservation than larger ones. An incubation period of 80 minutes with the PSC kit was essential to ensure optimal CPA diffusion into HBOs with a diameter of 400 - 600 μm. These cryopreserved early-stage HBOs successfully matured over 30 days, exhibiting gene expression patterns akin to non-cryopreserved HBOs. The cryopreserved early-stage HBOs on the pillar plate maintained high viability after thawing and successfully differentiated into mature HBOs. This on-chip cryopreservation method could extend to other small organoids, by integrating cryopreservation, thawing, culturing, staining, rinsing, and imaging processes within a single system, thereby preserving the 3D structure of the organoids.
使用冻存管进行冷冻保存可延长细胞在低温下的储存时间,类器官冷冻保存技术的进步提高了实验的可重复性并缩短了培养时间。然而,由于冷冻保护剂(CPA)向类器官核心的扩散有限以及这些试剂的潜在毒性,冷冻保存人类类器官面临着挑战。为了克服这些障碍,我们开发了一种使用柱板平台的冷冻保存技术。为了说明冷冻保存技术在人类脑类器官(HBO)中的应用,通过在超低吸附(ULA)384孔板中将诱导多能干细胞(iPSC)分化为神经外胚层(NE)来制备早期HBO。这些NE被转移并封装在柱板上的基质胶中。在柱板上的早期HBO暴露于四种市售的CPA,包括PSC冷冻保存试剂盒、CryoStor CS10、3dGRO和10%二甲基亚砜(DMSO),然后在-80°C下冷冻过夜,随后储存在液氮杜瓦瓶中。我们研究了CPA类型、类器官大小和CPA暴露持续时间对解冻后细胞活力的影响。此外,使用逆转录定量聚合酶链反应(RT-qPCR)和免疫荧光染色评估柱板上早期HBO的分化情况。PSC冷冻保存试剂盒被证明对在柱板上保存这些HBO毒性最小。值得注意的是,较小的HBO在冷冻保存后显示出比大的HBO更高的细胞活力。用PSC试剂盒孵育80分钟对于确保CPA最佳扩散到直径为400 - 600μm的HBO中至关重要。这些冷冻保存的早期HBO在30天内成功成熟,表现出与未冷冻保存的HBO相似的基因表达模式。柱板上冷冻保存的早期HBO解冻后保持高活力,并成功分化为成熟的HBO。这种芯片上的冷冻保存方法可以扩展到其他小型类器官,通过在单个系统中整合冷冻保存、解冻、培养、染色、冲洗和成像过程,从而保留类器官的三维结构。