Suppr超能文献

通过碳层调控铱与CoMoC桥连之间的电子再分布,可在工业级电流密度下显著提高整体水分解性能。

Manipulating electron redistribution between iridium and CoMoC bridging with a carbon layer leads to a significantly enhanced overall water splitting performance at industrial-level current density.

作者信息

Li Weimo, Gou Wenqiong, Zhang Linfeng, Zhong Mengxiao, Ren Siyu, Yu Guangtao, Wang Ce, Chen Wei, Lu Xiaofeng

机构信息

Alan G. MacDiarmid Institute, College of Chemistry, Jilin University Changchun 130012 P. R. China

Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Academy of Carbon Neutrality of Fujian Normal University, Fujian Normal University Fuzhou 350007 China

出版信息

Chem Sci. 2024 Jun 24;15(30):11890-11901. doi: 10.1039/d4sc02840f. eCollection 2024 Jul 31.

Abstract

Nowadays, alkaline water electrocatalysis is regarded as an economical and highly effective approach for large-scale hydrogen production. Highly active electrocatalysts functioning under large current density are urgently required for practical industrial applications. In this work, we present a meticulously designed methodology to anchor Ir nanoparticles on CoMoC nanofibers (CoMoC-Ir NFs) bridging with nitrogen-doped carbon as efficient bifunctional electrocatalysts with both excellent hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activity and stability in alkaline media. With a low Ir content of 5.9 wt%, CoMoC-Ir NFs require the overpotentials of only 348 and 316 mV at 1 A cm for the HER and OER, respectively, and both maintain stability for at least 500 h at ampere-level current density. Consequently, an alkaline electrolyzer based on CoMoC-Ir NFs only needs a voltage of 1.5 V to drive 10 mA cm and possesses excellent durability for 500 h at 1 A cm. Density functional theory calculations reveal that the introduction of Ir nanoparticles is pivotal for the enhanced electrocatalytic activity of CoMoC-Ir NFs. The induced interfacial electron redistribution between Ir and CoMoC bridging with nitrogen-doped carbon dramatically modulates the electron structure and activates inert atoms to generate more highly active sites for electrocatalysis. Moreover, the optimized electronic structure is more conducive to the balance of the adsorption and desorption energies of reaction intermediates, thus significantly promoting the HER, OER and overall water splitting performance.

摘要

如今,碱性水电催化被视为一种大规模制氢的经济高效方法。实际工业应用迫切需要在大电流密度下发挥作用的高活性电催化剂。在这项工作中,我们提出了一种精心设计的方法,将铱纳米颗粒锚定在与氮掺杂碳桥接的CoMoC纳米纤维(CoMoC-Ir NFs)上,作为高效双功能电催化剂,在碱性介质中具有优异的析氢反应(HER)和析氧反应(OER)活性及稳定性。CoMoC-Ir NFs的铱含量低至5.9 wt%,在1 A cm²的电流密度下,HER和OER的过电位分别仅为348和316 mV,并且在安培级电流密度下两者都能保持至少500小时的稳定性。因此,基于CoMoC-Ir NFs的碱性电解槽驱动10 mA cm²仅需1.5 V电压,在1 A cm²的电流密度下具有500小时的优异耐久性。密度泛函理论计算表明,铱纳米颗粒的引入对提高CoMoC-Ir NFs的电催化活性至关重要。铱与氮掺杂碳桥接的CoMoC之间诱导的界面电子重新分布极大地调节了电子结构,并激活惰性原子以产生更多用于电催化的高活性位点。此外,优化的电子结构更有利于反应中间体吸附和脱附能量的平衡,从而显著促进HER、OER和整体水分解性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d868/11290449/9a1e764c6e99/d4sc02840f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验