Odierna G Lorenzo, Kerwin Sarah K, Shin Grace Ji-Eun, Millard S Sean
School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.
Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
Front Mol Neurosci. 2024 Jul 18;17:1415207. doi: 10.3389/fnmol.2024.1415207. eCollection 2024.
Recent studies capitalizing on the newly complete nanometer-resolution larval connectome have made significant advances in identifying the structural basis of motor patterning. However, the molecular mechanisms utilized by neurons to wire these circuits remain poorly understood. In this study we explore how cell-specific expression of two isoforms, which mediate isoform-specific homophilic binding, contributes to motor patterning and output of larvae. Ablating isoform diversity resulted in impaired locomotion. Electrophysiological assessment at the neuromuscular junction during fictive locomotion indicated that this behavioral defect was largely caused by weaker bouts of motor neuron activity. Morphological analyses of single motor neurons using MultiColour FlpOut revealed severe errors in dendrite arborization and assessment of cholinergic and GABAergic projections to the motor domain revealed altered morphology of interneuron processes. Loss of did not affect locomotor output, motor neuron activation or dendrite targeting. Our findings thus suggest that locomotor circuit phenotypes arise specifically from inappropriate Dscam2 interactions between premotor interneurons and motor neurons when they express the same isoform. Indeed, we report here that first-order premotor interneurons express . Since motor neurons express , our results provide evidence that isoform expression alternates between synaptic partners in the nerve cord. Our study demonstrates the importance of cell-specific alternative splicing in establishing the circuitry that underlies neuromotor patterning without inducing unwanted intercellular interactions.
最近利用新完成的纳米分辨率幼虫连接体进行的研究在确定运动模式的结构基础方面取得了重大进展。然而,神经元用于连接这些回路的分子机制仍知之甚少。在本研究中,我们探讨了介导同种型特异性嗜同性结合的两种同种型的细胞特异性表达如何影响幼虫的运动模式和输出。消除同种型多样性导致运动能力受损。在虚拟运动期间对神经肌肉接头进行的电生理评估表明,这种行为缺陷主要是由运动神经元活动的较弱发作引起的。使用多色FlpOut对单个运动神经元进行的形态学分析揭示了树突分支的严重错误,并且对运动域的胆碱能和GABA能投射的评估揭示了中间神经元过程的形态改变。缺失 并不影响运动输出、运动神经元激活或树突靶向。因此,我们的研究结果表明,当运动前中间神经元和运动神经元表达相同的同种型时,运动回路表型特别源于它们之间不适当的Dscam2相互作用。事实上,我们在此报告,一级运动前中间神经元表达 。由于运动神经元表达 ,我们的结果提供了证据表明同种型表达在神经索中的突触伙伴之间交替。我们的研究证明了细胞特异性可变剪接在建立神经运动模式基础的电路中而不诱导不必要的细胞间相互作用的重要性。