Sen Busra, Elfring Jos, Torta Elena, van de Molengraft René
Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.
Front Robot AI. 2024 Jul 18;11:1340334. doi: 10.3389/frobt.2024.1340334. eCollection 2024.
Learning from demonstration is an approach that allows users to personalize a robot's tasks. While demonstrations often focus on conveying the robot's motion or task plans, they can also communicate user intentions through object attributes in manipulation tasks. For instance, users might want to teach a robot to sort fruits and vegetables into separate boxes or to place cups next to plates of matching colors. This paper introduces a novel method that enables robots to learn the semantics of user demonstrations, with a particular emphasis on the relationships between object attributes. In our approach, users demonstrate essential task steps by manually guiding the robot through the necessary sequence of poses. We reduce the amount of data by utilizing only robot poses instead of trajectories, allowing us to focus on the task's goals, specifically the objects related to these goals. At each step, known as a keyframe, we record the end-effector pose, object poses, and object attributes. However, the number of keyframes saved in each demonstration can vary due to the user's decisions. This variability in each demonstration can lead to inconsistencies in the significance of keyframes, complicating keyframe alignment to generalize the robot's motion and the user's intention. Our method addresses this issue by focusing on teaching the higher-level goals of the task using only the required keyframes and relevant objects. It aims to teach the rationale behind object selection for a task and generalize this reasoning to environments with previously unseen objects. We validate our proposed method by conducting three manipulation tasks aiming at different object attribute constraints. In the reproduction phase, we demonstrate that even when the robot encounters previously unseen objects, it can generalize the user's intention and execute the task.
从示范中学习是一种允许用户对机器人任务进行个性化设置的方法。虽然示范通常侧重于传达机器人的运动或任务计划,但在操作任务中,它们也可以通过物体属性来传达用户意图。例如,用户可能想教机器人将水果和蔬菜分类到不同的盒子里,或者将杯子放在颜色匹配的盘子旁边。本文介绍了一种新颖的方法,使机器人能够学习用户示范的语义,特别强调物体属性之间的关系。在我们的方法中,用户通过手动引导机器人完成必要的姿势序列来示范基本任务步骤。我们只利用机器人的姿势而不是轨迹来减少数据量,使我们能够专注于任务的目标,特别是与这些目标相关的物体。在每一步,即关键帧,我们记录末端执行器的姿势、物体的姿势和物体的属性。然而,由于用户的决定,每个示范中保存的关键帧数可能会有所不同。每个示范中的这种变异性可能导致关键帧重要性的不一致,使关键帧对齐复杂化,从而难以概括机器人的运动和用户的意图。我们的方法通过仅使用所需的关键帧和相关物体来专注于教授任务的更高层次目标,从而解决了这个问题。它旨在教授任务中物体选择背后的原理,并将这种推理推广到具有以前未见过的物体的环境中。我们通过进行针对不同物体属性约束的三个操作任务来验证我们提出的方法。在再现阶段,我们证明即使机器人遇到以前未见过的物体,它也能够概括用户的意图并执行任务。