Zhang Yachao, Giménez-Santamarina Silvia, Cardona-Serra Salvador, Gao Fei, Coronado Eugenio, Brandbyge Mads
Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China.
Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
Nano Lett. 2024 Aug 14;24(32):9846-9853. doi: 10.1021/acs.nanolett.4c01684. Epub 2024 Aug 2.
Manipulating individual molecular spin states with electronic current has the potential to revolutionize quantum information devices. However, it is still unclear how a current can cause a spin transition in single-molecule devices. Here, we propose a spin-crossover (SCO) mechanism induced by electron-phonon coupling in an iron(II) phthalocyanine molecule situated on a graphene-decoupled Ir(111) substrate. We performed simulations of both elastic and inelastic electron tunneling spectroscopy (IETS), which reveal current-induced Fe-N vibrations and an underestimation of established electron-vibration signals. Going beyond standard perturbation theory, we examined molecules in various charge and spin states using the Franck-Condon framework. The increased probability of spin switching suggests that notable IETS signals indicate SCO triggered by the inelastic vibrational excitation associated with Fe-N stretching.
利用电流操控单个分子自旋态有望彻底改变量子信息设备。然而,目前仍不清楚电流如何在单分子器件中引发自旋转变。在此,我们提出一种自旋交叉(SCO)机制,该机制由位于石墨烯解耦的Ir(111)衬底上的铁(II)酞菁分子中的电子 - 声子耦合诱导产生。我们进行了弹性和非弹性电子隧穿光谱(IETS)模拟,结果揭示了电流诱导的Fe - N振动以及对已确立的电子 - 振动信号的低估。超越标准微扰理论,我们使用弗兰克 - 康登框架研究了处于各种电荷和自旋态的分子。自旋切换概率的增加表明,显著的IETS信号表明与Fe - N拉伸相关的非弹性振动激发触发了SCO。