Faculty of Engineering and Physical Sciences, School of Computing, University of Leeds, Leeds, UK.
Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
J Microsc. 2024 Dec;296(3):214-226. doi: 10.1111/jmi.13349. Epub 2024 Aug 2.
Single Molecule Localisation Microscopy (SMLM) is becoming a widely used technique in cell biology. After processing the images, the molecular localisations are typically stored in a table as xy (or xyz) coordinates, with additional information, such as number of photons, etc. This set of coordinates can be used to generate an image to visualise the molecular distribution, for example, a 2D or 3D histogram of localisations. Many different methods have been devised to analyse SMLM data, among which cluster analysis of the localisations is popular. However, it can be useful to first segment the data, to extract the localisations in a specific region of a cell or in individual cells, prior to downstream analysis. Here we describe a pipeline for annotating localisations in an SMLM dataset in which we compared membrane segmentation approaches, including Otsu thresholding and machine learning models, and subsequent cell segmentation. We used an SMLM dataset derived from dSTORM images of sectioned cell pellets, stained for the membrane proteins EGFR (epidermal growth factor receptor) and EREG (epiregulin) as a test dataset. We found that a Cellpose model retrained on our data performed the best in the membrane segmentation task, allowing us to perform downstream cluster analysis of membrane versus cell interior localisations. We anticipate this will be generally useful for SMLM analysis.
单分子定位显微镜(SMLM)技术在细胞生物学领域得到了广泛应用。在对图像进行处理后,分子定位通常以 xy(或 xyz)坐标的形式存储在表中,并附有其他信息,如光子数等。可以使用这组坐标生成图像以可视化分子分布,例如,定位的 2D 或 3D 直方图。已经设计了许多不同的方法来分析 SMLM 数据,其中定位的聚类分析很流行。然而,在进行下游分析之前,首先对数据进行分割,提取细胞特定区域或单个细胞中的定位,可能会很有用。在这里,我们描述了一种用于注释 SMLM 数据集的工作流程,其中我们比较了膜分割方法,包括 Otsu 阈值法和机器学习模型,以及随后的细胞分割。我们使用源自细胞切片的 dSTORM 图像的 SMLM 数据集作为测试数据集,该数据集针对膜蛋白 EGFR(表皮生长因子受体)和 EREG(表皮调节素)进行了染色。我们发现,在膜分割任务中,重新训练的 Cellpose 模型表现最佳,这使我们能够对膜与细胞内部定位进行下游聚类分析。我们预计这将对 SMLM 分析具有普遍的适用性。