Suppr超能文献

ECLiPSE:一种用于二维和三维单分子定位显微镜数据的结构和形态分析的通用分类技术。

ECLiPSE: a versatile classification technique for structural and morphological analysis of 2D and 3D single-molecule localization microscopy data.

机构信息

Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Nat Methods. 2024 Oct;21(10):1909-1915. doi: 10.1038/s41592-024-02414-3. Epub 2024 Sep 10.

Abstract

Single-molecule localization microscopy (SMLM) has gained widespread use for visualizing the morphology of subcellular organelles and structures with nanoscale spatial resolution. However, analysis tools for automatically quantifying and classifying SMLM images have lagged behind. Here we introduce Enhanced Classification of Localized Point clouds by Shape Extraction (ECLiPSE), an automated machine learning analysis pipeline specifically designed to classify cellular structures captured through two-dimensional or three-dimensional SMLM. ECLiPSE leverages a comprehensive set of shape descriptors, the majority of which are directly extracted from the localizations to minimize bias during the characterization of individual structures. ECLiPSE has been validated using both unsupervised and supervised classification on datasets, including various cellular structures, achieving near-perfect accuracy. We apply two-dimensional ECLiPSE to classify morphologically distinct protein aggregates relevant for neurodegenerative diseases. Additionally, we employ three-dimensional ECLiPSE to identify relevant biological differences between healthy and depolarized mitochondria. ECLiPSE will enhance the way we study cellular structures across various biological contexts.

摘要

单分子定位显微镜(SMLM)已经广泛用于可视化亚细胞细胞器和结构的形态,具有纳米级空间分辨率。然而,用于自动定量和分类 SMLM 图像的分析工具却落后了。在这里,我们介绍了增强的通过形状提取进行局部点云分类(ECLiPSE),这是一个专门设计用于通过二维或三维 SMLM 捕获的细胞结构进行分类的自动化机器学习分析管道。ECLiPSE 利用了一整套形状描述符,其中大多数是直接从定位中提取的,以在对单个结构进行特征描述时最小化偏差。ECLiPSE 已经在数据集上通过无监督和监督分类进行了验证,包括各种细胞结构,实现了接近完美的准确性。我们将二维 ECLiPSE 应用于分类与神经退行性疾病相关的形态上不同的蛋白质聚集体。此外,我们还使用三维 ECLiPSE 来识别健康和去极化线粒体之间的相关生物学差异。ECLiPSE 将增强我们在各种生物学背景下研究细胞结构的方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2686/11466814/14cdb90a316f/41592_2024_2414_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验