Zhang Guanqing, Liu Fengqing, Zhu Qiliang, Qian Hao, Zhong Shouchao, Tan Jingze, Zheng Anmin, Liu Fujian, Jiang Lilong
National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, Fujian, 350002, China.
Qingyuan Innovation Laboratory, Quanzhou, Fujian, 362801, P.R. China.
Small. 2024 Nov;20(46):e2404548. doi: 10.1002/smll.202404548. Epub 2024 Aug 2.
Herein, a variety of 2,6-diaminopyridine (DAP) derived nitrogen-doped hierarchically porous carbon (DAP-NHPC-T) prepared from carbonization-induced structure transformation of DAP-Zn-SiO-P123 nanocomposites are reported, which are facilely prepared from solvent-free co-assembly of block copolymer templates P123 with pyridine-rich monomer of DAP, Zn(NO) and tetramethoxysilane. In the pyrolysis process, P123 and SiO templates promote the formation of mesoporous and supermicroporous structures in the DAP-NHPC-T, while high-temperature volatilization of Zn contributed to generation of micropores. The DAP-NHPC-T possess large BET surface areas (≈956-1126 m g), hierarchical porosity with micro-supermicro-mesoporous feature and high nitrogen contents (≈10.44-5.99 at%) with tunable density of pyridine-based nitrogen sites (≈5.99-3.32 at%), exhibiting good accessibility and reinforced interaction with SO. Consequently, the DAP-NHPC-T show high SO capacity (14.7 mmol g, 25 °C and 1.0 bar) and SO/CO/N IAST selectivities, extraordinary dynamic breakthrough separation efficiency and cycling stability, far beyond any other reported nitrogen-doped metal-free carbon. As verified by in situ spectroscopy and theoretical calculations, the pyridine-based nitrogen sites of the DAP-NHPC-T boost SO adsorption via the unique charge transfer, the adsorption mechanism and reaction model have been finally clarified.
本文报道了由2,6-二氨基吡啶(DAP)衍生的多种氮掺杂分级多孔碳(DAP-NHPC-T),它们是通过DAP-Zn-SiO-P123纳米复合材料的碳化诱导结构转变制备而成,该复合材料由嵌段共聚物模板P123与富含吡啶的DAP单体、Zn(NO)和四甲氧基硅烷通过无溶剂共组装简便制备。在热解过程中,P123和SiO模板促进了DAP-NHPC-T中介孔和超微孔结构的形成,而Zn的高温挥发有助于微孔的产生。DAP-NHPC-T具有较大的BET表面积(约956 - 1126 m²/g)、具有微-超微-介孔特征的分级孔隙率以及高氮含量(约10.44 - 5.99 at%),且吡啶基氮位点密度可调(约5.99 - 3.32 at%),表现出良好的可及性以及与SO₂的增强相互作用。因此,DAP-NHPC-T表现出高SO₂容量(25°C和1.0 bar下为14.7 mmol/g)和SO₂/CO₂/N₂ IAST选择性、出色的动态突破分离效率和循环稳定性,远远超过其他任何报道的氮掺杂无金属碳。经原位光谱和理论计算验证,DAP-NHPC-T的吡啶基氮位点通过独特的电荷转移促进SO₂吸附,最终阐明了吸附机理和反应模型。