Suppr超能文献

从用于固体氧化物燃料电池(SOFC)和固体氧化物电解池(SOEC)的(LaSr)TiNiO电极中确定的A位缺陷范围,用于脱溶。

A-site-deficiency range identified for exsolution from (LaSr)TiNiO electrodes for SOFC and SOEC.

作者信息

Jiang Yao, Li Chengyu, Huang Haonan, Zhang Linxi, Zhang Jingyu, Jiang Cairong, Chen Yongjin, Yao Yali, Ma Jianjun

机构信息

School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, PR China.

Institute for Catalysis and Energy Solutions (ICES), University of South Africa, Roodepoort, 1710, South Africa.

出版信息

Nanoscale. 2024 Aug 15;16(32):15396-15404. doi: 10.1039/d4nr02325k.

Abstract

Modulating the A-site deficiency is a useful method to achieve the exsolution of nanoparticles on the surface of perovskite, improving the catalytic activity. However, rules for designing the deficiency value and its roles on the structure and performance remain unclear. In this study, a wide range of A-site deficiencies of (LaSr)TiNiO (LSTN, = 0.00, 0.13, 0.15, and 0.18) titanate perovskite materials was designed to systematically investigate their crystal structure, binding energy, oxygen vacancy concentration, exsolution process, and electrochemical performance. An extremely high conductivity (, 331.75 S cm@800 °C, 5% H/Ar) was obtained in parallel with enhanced catalytical activity in SOFC and SOEC modes. The A-site-deficient samples displayed a higher conductivity, oxygen vacancy concentration, and power output than the stoichiometric samples ( = 0.00). The best maximum power density of 78.74 mW cm and the highest population density of 25 particles per μm were obtained on the deficient LSTN with = 0.13. These findings suggest that LSTN is an exceptionally promising material for solid oxide cell (SOC) electrodes.

摘要

调节A位缺陷是实现纳米颗粒在钙钛矿表面析出、提高催化活性的一种有效方法。然而,设计缺陷值的规则及其对结构和性能的作用仍不明确。在本研究中,设计了一系列具有不同A位缺陷的(LaSr)TiNiO(LSTN, = 0.00、0.13、0.15和0.18)钛酸钙钛矿材料,以系统地研究它们的晶体结构、结合能、氧空位浓度、析出过程和电化学性能。在800℃、5%H/Ar条件下获得了极高的电导率( ,331.75 S cm),同时在固体氧化物燃料电池(SOFC)和固体氧化物电解池(SOEC)模式下催化活性增强。与化学计量比样品( = 0.00)相比,A位缺陷样品表现出更高的电导率、氧空位浓度和功率输出。在 = 0.13的缺陷LSTN上获得了最佳最大功率密度78.74 mW cm和最高颗粒数密度25个/μm。这些发现表明,LSTN是一种非常有前景的固体氧化物电池(SOC)电极材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验