文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于三个独立的阿尔茨海默病队列鉴定与能量代谢相关的血液生物标志物并构建诊断预测模型。

Identification of Blood Biomarkers Related to Energy Metabolism and Construction of Diagnostic Prediction Model Based on Three Independent Alzheimer's Disease Cohorts.

机构信息

Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China.

Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China.

出版信息

J Alzheimers Dis. 2024;100(4):1261-1287. doi: 10.3233/JAD-240301.


DOI:10.3233/JAD-240301
PMID:39093073
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11380308/
Abstract

BACKGROUND: Blood biomarkers are crucial for the diagnosis and therapy of Alzheimer's disease (AD). Energy metabolism disturbances are closely related to AD. However, research on blood biomarkers related to energy metabolism is still insufficient. OBJECTIVE: This study aims to explore the diagnostic and therapeutic significance of energy metabolism-related genes in AD. METHODS: AD cohorts were obtained from GEO database and single center. Machine learning algorithms were used to identify key genes. GSEA was used for functional analysis. Six algorithms were utilized to establish and evaluate diagnostic models. Key gene-related drugs were screened through network pharmacology. RESULTS: We identified 4 energy metabolism genes, NDUFA1, MECOM, RPL26, and RPS27. These genes have been confirmed to be closely related to multiple energy metabolic pathways and different types of T cell immune infiltration. Additionally, the transcription factors INSM2 and 4 lncRNAs were involved in regulating 4 genes. Further analysis showed that all biomarkers were downregulated in the AD cohorts and not affected by aging and gender. More importantly, we constructed a diagnostic prediction model of 4 biomarkers, which has been validated by various algorithms for its diagnostic performance. Furthermore, we found that valproic acid mainly interacted with these biomarkers through hydrogen bonding, salt bonding, and hydrophobic interaction. CONCLUSIONS: We constructed a predictive model based on 4 energy metabolism genes, which may be helpful for the diagnosis of AD. The 4 validated genes could serve as promising blood biomarkers for AD. Their interaction with valproic acid may play a crucial role in the therapy of AD.

摘要

背景:血液生物标志物对于阿尔茨海默病(AD)的诊断和治疗至关重要。能量代谢紊乱与 AD 密切相关。然而,与能量代谢相关的血液生物标志物的研究仍然不足。

目的:本研究旨在探讨能量代谢相关基因在 AD 中的诊断和治疗意义。

方法:从 GEO 数据库和单中心获取 AD 队列。使用机器学习算法识别关键基因。进行 GSEA 功能分析。利用 6 种算法建立和评估诊断模型。通过网络药理学筛选与关键基因相关的药物。

结果:我们确定了 4 个能量代谢基因,NDUFA1、MECOM、RPL26 和 RPS27。这些基因已被证实与多种能量代谢途径和不同类型的 T 细胞免疫浸润密切相关。此外,转录因子 INSM2 和 4 个 lncRNA 参与调节 4 个基因。进一步分析表明,所有生物标志物在 AD 队列中均下调,不受年龄和性别影响。更重要的是,我们构建了一个由 4 个生物标志物组成的诊断预测模型,该模型已通过各种算法验证其诊断性能。此外,我们发现丙戊酸主要通过氢键、盐键和疏水相互作用与这些生物标志物相互作用。

结论:我们构建了一个基于 4 个能量代谢基因的预测模型,该模型可能有助于 AD 的诊断。4 个经过验证的基因可作为 AD 的有前途的血液生物标志物。它们与丙戊酸的相互作用可能在 AD 的治疗中发挥关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/e9d5e13100fd/jad-100-jad240301-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/54be65e34fdf/jad-100-jad240301-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/2877a0cfe337/jad-100-jad240301-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/5c1297128ad9/jad-100-jad240301-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/820fd7f6fcf1/jad-100-jad240301-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/d12fdca84816/jad-100-jad240301-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/c152ccccd841/jad-100-jad240301-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/cf3beda7afab/jad-100-jad240301-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/630baea986bd/jad-100-jad240301-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/7d5ab275e00f/jad-100-jad240301-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/e9d5e13100fd/jad-100-jad240301-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/54be65e34fdf/jad-100-jad240301-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/2877a0cfe337/jad-100-jad240301-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/5c1297128ad9/jad-100-jad240301-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/820fd7f6fcf1/jad-100-jad240301-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/d12fdca84816/jad-100-jad240301-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/c152ccccd841/jad-100-jad240301-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/cf3beda7afab/jad-100-jad240301-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/630baea986bd/jad-100-jad240301-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/7d5ab275e00f/jad-100-jad240301-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80e1/11380308/e9d5e13100fd/jad-100-jad240301-g010.jpg

相似文献

[1]
Identification of Blood Biomarkers Related to Energy Metabolism and Construction of Diagnostic Prediction Model Based on Three Independent Alzheimer's Disease Cohorts.

J Alzheimers Dis. 2024

[2]
Development of a novel immune infiltration-related diagnostic model for Alzheimer's disease using bioinformatic strategies.

Front Immunol. 2023

[3]
Bioinformatics analysis of diagnostic biomarkers for Alzheimer's disease in peripheral blood based on sex differences and support vector machine algorithm.

Hereditas. 2022-10-4

[4]
Identification of diagnostic gene signatures and molecular mechanisms for non-alcoholic fatty liver disease and Alzheimer's disease through machine learning algorithms.

Clin Chim Acta. 2024-4-15

[5]
hdWGCNA and Cellular Communication Identify Active NK Cell Subtypes in Alzheimer's Disease and Screen for Diagnostic Markers through Machine Learning.

Curr Alzheimer Res. 2024

[6]
Identification of genes related to glucose metabolism and analysis of the immune characteristics in Alzheimer's disease.

Brain Res. 2023-11-15

[7]
Identification of diagnostic genes for both Alzheimer's disease and Metabolic syndrome by the machine learning algorithm.

Front Immunol. 2022

[8]
Identification of immune microenvironment subtypes and signature genes for Alzheimer's disease diagnosis and risk prediction based on explainable machine learning.

Front Immunol. 2022

[9]
Identification of Blood-Based Glycolysis Gene Associated with Alzheimer's Disease by Integrated Bioinformatics Analysis.

J Alzheimers Dis. 2021

[10]
Uncovering the Impact of Aggrephagy in the Development of Alzheimer's Disease: Insights Into Diagnostic and Therapeutic Approaches from Machine Learning Analysis.

Curr Alzheimer Res. 2023

引用本文的文献

[1]
Single cell RNA sequencing analysis of mice hindlimb muscles identifies transcriptional heterogeneity in aging and physical frailty.

Sci Rep. 2025-7-10

本文引用的文献

[1]
Mitophagy in Alzheimer's Disease: A Bibliometric Analysis from 2007 to 2022.

J Alzheimers Dis Rep. 2024-1-29

[2]
Mapping morbidity 10 years prior to a diagnosis of young onset Alzheimer's disease.

Alzheimers Dement. 2024-4

[3]
Importance of cerebrospinal fluid (CSF) collection protocol for the accurate diagnosis of Alzheimer's disease when using CSF biomarkers.

Alzheimers Dement. 2024-5

[4]
Biomarkers of Alzheimer's disease and neurodegeneration in dried blood spots-A new collection method for remote settings.

Alzheimers Dement. 2024-4

[5]
NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport.

Mol Neurodegener. 2024-1-29

[6]
Plasma metabolic profiles predict future dementia and dementia subtypes: a prospective analysis of 274,160 participants.

Alzheimers Res Ther. 2024-1-22

[7]
Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology.

JAMA Neurol. 2024-3-1

[8]
Real-time imaging of mitochondrial redox reveals increased mitochondrial oxidative stress associated with amyloid β aggregates in vivo in a mouse model of Alzheimer's disease.

Mol Neurodegener. 2024-1-18

[9]
Metabolic Bypass Rescues Aberrant S-nitrosylation-Induced TCA Cycle Inhibition and Synapse Loss in Alzheimer's Disease Human Neurons.

Adv Sci (Weinh). 2024-3

[10]
Alzheimer's disease early diagnostic and staging biomarkers revealed by large-scale cerebrospinal fluid and serum proteomic profiling.

Innovation (Camb). 2024-1-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索