Bahrami A, Schmidt-Kaler F
Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, USA.
Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz D-55099, Germany.
Rev Sci Instrum. 2024 Aug 1;95(8). doi: 10.1063/5.0192780.
Hybrid quantum systems integrate laser-cooled trapped ions and ultracold quantum gases within a single experimental configuration, offering vast potential for applications in quantum chemistry, polaron physics, quantum information processing, and quantum simulations. In this study, we introduce the development and experimental validation of an ion trap chip that incorporates a flat atomic chip trap directly beneath it. This innovative design addresses specific challenges associated with hybrid atom-ion traps by providing precisely aligned and stable components, facilitating independent adjustments of the depth of the atomic trapping potential, and positioning trapped ions. Our findings include the simultaneous loading of the ion trap with linear Yb+ ion crystals and the loading of neutral 87Rb atoms into a mirror magneto-optical trap.
混合量子系统在单一实验配置中集成了激光冷却的捕获离子和超冷量子气体,在量子化学、极化子物理、量子信息处理和量子模拟等应用方面具有巨大潜力。在本研究中,我们介绍了一种离子阱芯片的开发和实验验证,该芯片下方直接集成了一个平面原子芯片阱。这种创新设计通过提供精确对齐且稳定的组件,解决了与混合原子 - 离子阱相关的特定挑战,便于独立调整原子捕获势的深度以及定位捕获的离子。我们的研究结果包括用线性Yb⁺离子晶体同时加载离子阱,以及将中性⁸⁷Rb原子加载到镜像磁光阱中。