Fatima Farkhunda, Tiwari Nishi Prakash, Singh Varsha
Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, - 835215, India.
Appl Biochem Biotechnol. 2025 Jan;197(1):19-34. doi: 10.1007/s12010-024-05019-w. Epub 2024 Aug 2.
This study employs Taguchi design of experiments (DOE) to optimize biosurfactant yield by analyzing the impact of various input parameters. Signal-to-noise ratio analysis was utilized for optimization, corroborated by ANOVA findings. Regression equations depicted response behaviour and are validated through a confirmation test. Taguchi methodology identified optimal conditions for maximum biosurfactant yield: agitation (180 rpm), inoculum size (2%), beef extract (5 g/L), diesel (20 ml/L), peptone (5 g/L), NaCl (7 g/L), incubation time (4 days), pH (7.9), and yeast extract (6 g/L). This yielded an 8.33% increase to 1.53 g/L, with initial optimum parameters projecting 1.41 g/L. ANOVA ranked and quantified control factor contributions, revealing agitation's significant (31.41%) impact on yield. The study underscores the viability of Taguchi's optimal conditions for substantial yield improvement within specific ranges. The strong alignment between expected and experimental yields affirmed the reliability of developed models for optimal yield selection. This study underscores the power of statistical techniques like Taguchi DOE and ANOVA in systematically enhancing biosurfactant production by Bacillus aryabhattai SPS1001 and paves the way for future advancements in bioprocess optimization.
本研究采用田口实验设计(DOE),通过分析各种输入参数的影响来优化生物表面活性剂的产量。利用信噪比分析进行优化,并通过方差分析结果进行佐证。回归方程描述了响应行为,并通过验证试验进行验证。田口方法确定了生物表面活性剂产量最大化的最佳条件:搅拌速度(180转/分钟)、接种量(2%)、牛肉浸膏(5克/升)、柴油(20毫升/升)、蛋白胨(5克/升)、氯化钠(7克/升)、培养时间(4天)、pH值(7.9)和酵母浸膏(6克/升)。这使得产量提高了8.33%,达到1.53克/升,而初始最佳参数预计产量为1.41克/升。方差分析对控制因素的贡献进行了排名和量化,揭示了搅拌对产量有显著影响(31.41%)。该研究强调了田口最佳条件在特定范围内大幅提高产量的可行性。预期产量与实验产量之间的高度一致性证实了所开发的最佳产量选择模型的可靠性。本研究强调了田口实验设计和方差分析等统计技术在系统提高阿氏芽孢杆菌SPS1001生物表面活性剂产量方面的作用,并为未来生物过程优化的进展铺平了道路。