Chattopadhyay Chandrodoy, Ott Josh, Schäfer Thomas, Skokov Vladimir V
Department of Physics, <a href="https://ror.org/04tj63d06">North Carolina State University</a>, Raleigh, North Carolina 27695.
Phys Rev Lett. 2024 Jul 19;133(3):032301. doi: 10.1103/PhysRevLett.133.032301.
We present simulations of stochastic fluid dynamics in the vicinity of a critical endpoint belonging to the universality class of the Ising model. This study is motivated by the challenge of modeling the dynamics of critical fluctuations near a conjectured critical endpoint in the phase diagram of quantum chromodynamics (QCD). We focus on the interaction of shear modes with a conserved scalar density, which is known as model H. We show that the observed dynamical scaling behavior depends on the correlation length and the shear viscosity of the fluid. As the correlation length is increased or the viscosity is decreased we observe a crossover from the dynamical exponent of critical diffusion, z≃4, to the expected scaling exponent of model H, z≃3. We use our method to investigate the time-dependent correlation function of non-Gaussian moments M^{n}(t) of the order parameter. We find that the relaxation time depends in a nontrivial manner on the power n.
我们展示了属于伊辛模型普适类的临界端点附近随机流体动力学的模拟。这项研究的动机是模拟量子色动力学(QCD)相图中推测的临界端点附近临界涨落动力学的挑战。我们关注剪切模式与守恒标量密度的相互作用,即所谓的模型H。我们表明,观察到的动力学标度行为取决于流体的关联长度和剪切粘度。随着关联长度增加或粘度降低,我们观察到从临界扩散的动力学指数z≃4到模型H预期标度指数z≃3的转变。我们用我们的方法研究序参量非高斯矩Mⁿ(t)的时间相关关联函数。我们发现弛豫时间以一种非平凡的方式依赖于幂次n。